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ABSTRACT

This dissertation takes a global approach to the processing of infor-
mation from an array of sensors. Essentially, the unprocessed outputs of
the individual elements are consideved as the observables. The processor
structure is allowed to evolve freely with the sole restrictior being the
criterion of optimality.

Specifically, the array processors discussed must decide if the random
processes observed at the array =lement outputs consist of a signal obscured
by noise or noise alone. Any uncertain parameters are treated as random
variables and knowledge about them is summarized by a priori probability
density functions. The resulting detectors are optimum in the sense of
making a least-risk decision.

The general form of the 1likelihood ratio is derived based upon
observables consisting of the Fourier coefficients of the observed random
processes. For a stationary noise field consisting .£ a component indepen-
dent from sensor to sensor and an zdJitive directional component, the
covariance properties of these Fourier coefficients are pursued as a
function of the observation period length.

Unce the mathematics of the likelihood ratio has been written, the
optimal array processor can be implemented in various structures. Four
such canonical implementations are discussed: (1) one shot, (2) pseudo
estimator, (3) two step, and (4) sequential. The pseudo estimator
structure is shown to be the optimal counterpart of an appealing ad hoc

approach to array processor design where any uncertain parameters are

(ii]
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First estimated, then plugged into the parameters known likelihood ratio

——

as if they were known exactly. The general formulation of the time sequen-

tial structure reveals that the likelihood ratio caa be realized by an

N p— *

appropriate combination of single freauency components. Each is an
independent time sequential processor which utilizes its own natural

conjugate prior to achieve a certain degree of mathematical tractability.

PTG e g T

Of particuiar interest are three specific problems involving either
signal or noise source location uncertainty

(1) Gaussian Signal of Uncertzin Direction in Gaussian Noise (GUD) ;

(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SXED in NKD)

{3) Signal Known Exactly in Noise with an Additive Directional N

A N ATENCET A /T S SRR e oy LT

Noise Component of Uncertain Direction (SKE in NUD).

v
)
;‘
.
,
d

Their likelihood ratio expressicns are derived and performance reported for .t
several levels of location uicertainty and two array sizes. Performance
is stated in terms of the ROC curve,

Although an estimate and plug structure is appealing due to its explicit

adaptive characteristics, it is shown that the optimal array processor

exhibits learning or adaptive features naturally when implemented sequen-
tially. Computer simulation runs of the SKE in NUD processor are used to
illustrate the Bayesian updating which occurs as an integral part ol the

sequential structure.

[iii]
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p(:]2)
p'(85y)
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InA(+)

natural logarithmn

limit
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E[z] (mean or expected value of the vector z)

ith time sample of the function modulating cos(uwt-¢)

total number of Fourier coefficients less one; also used
as the height of the independent noise power spectrum

power spectral density function of the noise which is
independent from sensor to sensor

power spectrum height for white Gaussian noise

frequency index
vector of all Fourier coefficients due 1o noise alone

independent noise component at the Kxth array element output

. . . . 2
normal or Gaussian distribution with mean zero and variance ¢
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.Th .
i observation

real vector space of dimznsion m
autocorrelation function
a nonnegative function defined on 0

real part

height of the random signal power spectrum

power spectral density function of the random signal

vector of all tourier coefficients due to signal alone

the Fourier coefficient at w = nw, of a deterministic time
waveform

a deterministic time waveform

ith time sample of s(t)

sin(wx}/(mx)

total or incremental observation period length depending
on the context; also used to indicate transpose

the time variable

incremental observation period length (Chapter V)

paramete. in the conjugate a priori probability density
function for the uncertain direction problems in Chapter VI
pointing vector in the direction of the signal source at

W = nw
0

variance of both ¥ and y

parameter in the conjugate a priori probability density
function for the uncertain direction problems in Chapter VI

variance
pointing vector in the direction of the noise source at

w = nw
0
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o

8(+)

nm

ACe)
ACe]*)
At(e)

2k

random prccessas observed at all the array element outputs
random process cbserved at the xth array element output

varameter space

parametzp vector characterizing one member of a family of
probability density functions

a priori parameter vector

a posteriori parameter vector after K observations

sufficient statistic

O,ngm Kronecker delta function)

decision threshcid

parameter space

vector of parameters

likelihood ratio
conditional likelihood ratio
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variance

time delay

time delay of the signal between adjacent elements of a
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time delay of the directional noise betweesn adjacent elements
of a uniformly spaced linear array

time delay of the directional noise between the gth and kth
arpay elements

one-dimensionzl. parzmeter space in the SKEP problem
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Chapter I

INTRODUCTION AND OVERVIEW

The utilization of an array of sensors to obtain some degree of spatial

filtering or directional sensitivity is well known. Most of the antenna

arpray literature concerns itself with beam patterns achieved through various
weightings and location geometries of the individual elements. Thus, it is
not surprising that the approach to processing information from an array of
sensors usually has involved beamforming as a basis. While such an approach
seems quite logical, it inherently assumes that operaticns which appear !
correct locally (beamforming, for instance) will facilitate-the overall
goal of good signai processing. {
A global apprcach to the processing of information from an array of
sensors takes another point of viev. Essentially, the unprocessed outputs
of the individual elements are considered as the observables. Based upon f
some criterion of optimality, the processor structure is allowed to evolve
freely out of the mathematics of the problem being considered. Beamforming ]
may be an integral pacrt of the resulting structure, but it is not imposead
from the beginning.
The array processors discussed in this dissertation are derived from
within such a global framework. Specifically, they inust decide if the
random processes observed at the array element outputs consist of a signal
obscured by noise or noise alone. Any uncertain parameters in the problems

considered are treated as random variables and knowledge about them is

I R o 1351 )
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summarized by a priori probability density functions. The resulting
detectors are optimum in the sense of making a least-risk decision. This
approach has become known as the Bayesian design philosophy.

Major contributions of this work are in two areas. First, the time
sequential optimal array processor is formulated in general terms and its
natural adaptive feature is ncted. Second, tne optimal array processors
are derived and their performance reported for three specific problems
involving either signal or noise source loca”..n uncercainty.

Detection theory from a Bayesian point of view is reviewed in Chapter

ITI. The likelihood ratio is introduced as the optimum processor fcr any

goodness criterion where good decisions are preferred over bad. Then, four
canonical structures in which the likelihood ratioc may be implemented are

discussed. Lastly, evaluation of performance for optimal processors is

considered.

The general signal detection theory results of Chapter II are special-
ized in Chapter III to the optimal processing of data from an array of
sensors. A review of the related literature is presented followed by a
discussion on the utilization of the Fourier coefficients of the observed
random processes as observables for an optimal array processor. The
likelihood ratio based on these Fourier coefficients is derived and its

implementation in terms of three of the canonical structures mentioned

above is discussed. An important comparison is made between the optimal
and a popular ad hoc approach to the estimate and plug array processor.

In preparation for a discussion on the time sequential implementation
of the optimal array processor, Chapter IV considers the covariance between

the Fourier coefficients as a function of the observation period length.

PO ol
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Specific results for a noise fleld consisting of a component independent

from sensor to sensor and an additive directional component are given.

-

Chapter V presents the general formulation c¢f the time sequential
optimal array processor. A canonical structure is derived where it is _‘
shown that the likelihood ratio may be realized by an appropriste combina-
tion of single frequency components. For the particular noise fizld

described above, conditions are given for the selection of an incremental

observation period length.
Three specific detection problems where there is either signal or ;

noise source location uncertainty are the subject of Chapter VI. Their

parameter conditionai joint density expressions are derived and the

essential features of each is illustrated. ,!

A generalized approach to the analysis of performance for optimal

LN~

processors is discussed in Chapter VII. The utilization of sufficient

statistics as an intermediate step between the observables and the likeli-

hood ratio is shown to be advantageous when performance for more tnan one

pair of a prior probability density functions is desired. o
Chapter VIII contains a presentation and deta’led discussion of

performance results for the three specific problems mentioned above.

Several observations comparing the relative seriousness of signal and

noise source location uncertainty are made. '
The natural adaptive feature of an optimal array processor when imple-

mented sequenticlly is considered again in Chapter IX. Computer simula-

tion runs where the directional noise source's location is uncertain are

used to illustrate the Bayesian updating which occurs as an integral part

of the sequential structure. Several noise-to-noise ratios are investigated.

Lastly, Chapter X provides a summary of this work and suggestions for

A A T S PRSI g s+

|
|
|
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further research.
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Chapter II

BAYESIAN SIGNAL DETECTION THEORY

Within the communications context, the two broad subjects of signal
detection and estin.tion theory are concerned with decision making based
upon operations performed on some received data. In the first, only a

decision about the presence or apsence cf a certain signal, or sibset of

signals, in the data is required. In the second, the decision involves

estimating one or several parameters which are contained in the data.
Processors for these tasks are designed based on some criterion of goodness
or optimality. The viewpoint in this dissertation will be Bayesian where

any uncertain parameters are modeled as random variables and knowledge about

them is summarized by a priori probability density functions.

The following sections will provide the mathematical framework of

signal detection theory from which we will work.

Important concepts to be

s AT MY TR e AT PIARTYLE B 4 Ty S Y B O AR a2

emphasized are: (1) the likelihood ratio, (2) processor structure, and

(3) performance. Parts of the presentation will closely follow a recent

Q e re¥a £ W Y NS JUNTE

excellent paper by Birdsall and Gobien (Birdsall and Gobien, 1973). g)
4

The Likelihood Ratio ) ;
2

Consider the binary decision problem where there are two mutually

4
exclusive and exhaustive hypotheses, HO and Hl. Assume a vector of obser-

‘
vations R is made from a space A. Under Hy, the distribution on R is :

characterized by a probability density conditioned on a vector of param- :

oters 9, which belongs to the family {p(B_lgo,Ho) ; 8, € 00}. Under H

l’

b
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- Lo e WAL AL
o Vi A i it = S s b s e o o e di T % = S
v o T




TS T
R LT AR IS ML o MRl

s T e e - e et PO g d T ey
. N vyl L e s v gy o P e i M e A N T I A A SR S
prvi sl s SPu T A T T S  REEEY .

the density belongs to the family {p(gjgi,ﬂl) ; 8, € 6;}. There may be

components of and 91 which represent the same parametars. In summary

8

dy = P(RIgy, Hp) 5 8, €6

(2.1)
H, : p(R[8,, H)) 8, €0, .

Based upon the observation vector, the processor must make a decision

(Do or Dl) as to which hypothesis it believes is true. Classical detection {
theory has shown that decisions based upon the likelihood ratio are optimum )
for a wide range of goodness criteria (Peterson, Birdsall, and Fox, 1954 ;

Middleton and Van Meter, 1954) {

D
A p(glﬂl) ¢!

T IRTREE

? A(R) = SRR < " (2.2)
: Birdsall has shown more generally that any optimality criterion based on L
&

I

SR

"detection probability" P(Dllﬂl) and "false alarm probability" P(DllHO)

where good decisions are preferred over bad leads to the calculation of
A(R) as the decision statistic (Birdsall, 1973). Thus, a separation is J

achieved between the processing of R and the actual optimality criterion

Lysm—t—

chosen which arises in the selection of a threshold value n.

The situation may arise where one or several of the conditioning |

——

parameters in either or both and 6, are uncertain. These are then T

L 1
modeled as random variables and any prior knowledge about them is sum- fo
mavized by a priori probability density functions p(Qo) and p(gl). The

desired decision statistic now becomes the likelihood ratio of marginal

probability density functions on R

« . S
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[elp(B_l_e_l,Hl)p(jO_l)dgl
A(R) = — . {(2.3)
feop(_&;go,no )p(8,)de,

ot~
»

Processor Structure

Once the mathematics of the likelihood ratio has been wriitren, any

a———

E . realization of A(R) will achieve identical resuits. None the less, struc-
‘ turing the processor in various ways often can be advantageous from the
standpoint of any potential insight gained, comparison with non-Bayesian
approaches to a similar prcblem, or the desire of greater feasibility and
flexibility of implementation. Already considered, the one shot processor
simply calculates A(g) as shown in (2.3). Three other specific structures
to be discussed are: (1) pseudo estimator, (2) sequential, and (3) two
step.

The pseudo estimator structure is actually a particular case of a more

general class of structures resulting from the application of Bayes' rule

P(RI8)(8)
PR

(2.4)

Here the a posteriori probabiliiy density function of 8 is calculated based
on the observation vector R and the prior knowledge p(8). The marginal

dens®ty appearing in the denominator of (2.4) is simply a normalizing

constant
p(R) = [, p(R|8')p(8')d8". (2.3)
Utilizing Bayes' rule in (2.3), the likelihood ratio may be written as

(8, )p(8,|R,H,)
A(R) = ats—-oml? A(Elg_l,%) (2,8)
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8

x| ) P(R[S, ,H,) ]

where A(R]0,,0_.) =
—'=1’-0 p g;go,Ho .
i.e., the parameters known likelihood ratio. Note that any convenient, -
admissible value of the parameters may be used to evaluate (2.6). |
A pseudo estimator structure results if values for 6, and 8, may be -
found such that -
p(8,)p(8,IR,H,) 7
10 —0 .. (2.7) L

B8, )p(8, TRA)

Solution values thus chosen for 8, and @, are called pseudo estimates R

(Jaarsma, 1969). One value of such a structure is for the purpose cf -

comparison with other ad hoc processors where some estimation scheme is

joined with the purametsrs known likelihood ratio to yield a suboptimal,

but perhaps easily implementable, receiver design (Hatsell and Nolte, 1974). )

A second approach to processing the observation vector is to do so )1
sequentially, i.e., the processor operates on one or a small block of -
observations at a time in a serial fashion until all the data has been .

exhausted. Consider a vector of dimension K

K
p(R) = T p(R;IR; ;) . (2.8) J
i=1 o
An expression for p(RiI§i~l) is desired. Assuming parameter conditional t} é

v wnes

independence

P(R;[R; 1) =[5 P(R;|R; ;,00p(8IR; ;)0
(2.9)

= [ P(R;|®)P(8|R, ;)de

where p(gjgi_z) is an updated version of the a priori probability density i'

function of 6

S .
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9
R. 8 8IR,
0 P(8JR; ;) = a 12;1")?;‘%‘2) . (2.10)
gﬁ PA%-11840
E - The expressions (2.8), (2.5}, and (2.10) when conditioned on Hl and HO are
B
ix the design equations used to obtain the marginal distributions in (2.2) for

K iterations. In general, the numerator and denominator equations in (2.2)

R

must remain separated in the updating sequence.
Principal advantages gained in structuring a processor sequentially

include no need to specify the actual total observation length and the

R L

. inherent learning or adaptive nature of the processor through the iterative
1 updating of its a priori knowledge of the uncertain parameters., Furthermore,
Nolte has shown that it may be necessary to implement some processors
sequentially in order to avoid feasibility problems such as a growing

memory requirement (Nolte, 1965; Nolte, 1966)

. The final processing structure to be discussed concerns a two step
approach proposed by Birdsall (Birdsall, 1968; Birdsall and Gobien, 1973).
In the primary processor, the observation vector is processed in conjunction
with any convenient densities {subject tc minor restrictions) substituted
for the actual a priori knowledge. The output of the primary processor
is utilized by the secondary processor along with the true a priori

: knowledge to calculate the likelihood ratio. A more detailed description
will require introducing the concepts of sufficient statistics and repro-

ducing densities. These concepts will be most important in the development

»

of later chapters in this dissertation.
From a Bayzsian point of view, a fixed finite dimensional sufficient
statistic of the observation for an unknown parameter vector would be

defined as

p(8|R,) = p(8[8(Ry)) , for all R,. (2.11)
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Thus, the statistic Eﬁgx) contrains as much information about 6 as do the

observations themselves. Furthermore, the dimension of §j§x) remains

RN

S R

v ~ PRI,
- sty
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constant even as the dimensionality of the observation vector increases.

The classical factorization theorem previies conditions for identifying

a sufficient statistic.

i 1

Theorem 2.1 Let p(gxig) be the conditional density and 8(R.) the fixed

=

finite dimensional statistic as defined previously. Then gﬁgk) is sufficient

for Q'if there exist:

(1)} a function g[gﬁgx),gj which depends on the observation only {~
through §(*), and

(2) a function G(R,) which does not depend on 9, such that

P(R,[0) = g[8(R,),0] G(R,) . (2.12) |

£ Wgﬂf@g&mﬁy- S ALEREN TR AL

£

!
Consider the following example to illustrate this concept. The observations ?‘

EAAT
STV

Ri consist of an unknown scalar 6 added to independent samples n, drawn

fd
from a distribution N(0,02). l(

Ry =0 +n, i=1,.2,., ;

PO

Since the observations are parameter conditionally independent, their joint

distribution may be written and factored as follows

K ‘
T p(r;le) 1
AN

p(gxie)

~-K/2 K K
(2162) exp[—-—lg ) R?J . exp[—-4£—(K62-—26 I R)]
. i 2 . i
20 i=1 29 i=1

= 6(Ry) gLs(R,),01] {2.13)

K T
SR =[x, TR .
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By simply applying Bayes' rule, we can show that if g(l_lx) is sufficient for
9, then the a posteriori density of § given $(RyJ is independent of R,.
Substituting (2.12) into (2.4) we see that G(gx) cancels between the

numerator and denominator leaving

gL8(R,),81p(8)
p(8JR,) = , (2.14)
fe (numerator) d6

Next, we wish to consider a definition and theorem on reproducing density

functions (Birdsall and Gobien, 1973).

Definition 2.1 Let‘lfr(e) = {h(83Y) ; lt!‘cRm, 6 €6} be a family of pdf's on

© which is indexed by the m-dimensional parameter Y- -yr(e) is said to be

a reproducing class of probability densities under p(l_{KI 8) if, for any K,

whenever the a priori pdf on © is
p'(8)

there exists a YK

n(e;x" , yler

YK(YO,B,K)i r such that the a posteriori pdf is

p'(e|R,)
Thus, the a posteriori pdf remains in the same family of functions as the
a priori pdf, differing only in the salues of the parameters characterizing

members in the family. Primes will be used to signify that we are within

the class of natural reproducing densities.

Theorem 2.2 Suppose p(B_KI 8) admits a sufficient statistic of fixed

dimension §(R, ) for 8 and hence can be factored as in (2.12); let the

function g(+,*) be as defined there, and, provided the integral exists, put

gly,81
p'(83y) = , YET (2.15)
Jo ely0'1a0
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where I' is the image of the space of observations under §(+). Then
{p'(83y) ; Y €T} is a reproducing class of densities under p(gxlg).
The class thus defined is called the natural conjugate class of pdf's
under p(BKIQ); existence of a sufficient statistic implies existence of
such a class.

It is possible that the natural conjugate class may not contain a
member suitable for describing the true a priori knowledge. However,

suppose the true a priori pdf on @ can, for some lﬂer, be written
p(8) = r(g)p'(g;f) (2.186)

where r(8) is a nonnegative function defined on 0 and p(8) is absolutely
continuous with respect to p'(gjlp). Since p'(gixo) is reproducing, a
simple application of Bayes' rule (2.4) reveals that p(8) also reproduces

with parameter y

r(_e_)p'(g_;xK)
p(8JR ) = . (2.17)
o (numerator) dg

Utilizing (2.17) and a Bayes' ruale substitution for p'(Q;xF), the marginal
distribution of BK given the true a priori knowledge can be written in

terms of the natural conjugate class of densities and r(9)
K
p(R.) = p'(R) ]0 r(8)p'(85y ) do , (2.18)

The mathematical description of the two step approach to processor
structure now can be completed. The primary processor uses a convenient
description of a priori knowledge out of the class of natural conjugate
densities (if such a class exists). The secondary processor utilizes
the likelihood ratio calculated on the basis of these densities together
with the resulting sufficient statistics characterizing the a posteriori

pdf's and the true a priori knowledge to calculate the true likelihood ratio

R AT A5
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K
fel r(8;)p'(8,5y;) dg,
AR = A (Ry) . (2.19)
feo r(8,)p'(8,57,) d8,

Jo, P(R|8,)p'(8,) do,

AR = 1 .

o, PRleolp'(ey) ag,

The benefit of such an approach to receiver design is that potentially a
major portion of the processor can be designed without .nowing the exact
a priori knowledge. Furthermore, the mathematical tractability of the

natural conjugate priors may simplify the design of the primary processor.

Performance

The complete description of a detection device includes both the
processor itself (i.e., the mathematical transformation from observation
space to decision statistic) and the performance of the processor evaluated
q;th respect to the goodness criterion initially chosen. As mentioned
earlier, the likelihood ratio has been shown optimum for any goodness
criterion based on "detection probability" P(DllHl) and "false alarm
probability" P(Dllﬂo) where good decisions are preferred over bad. Thus,
the appropriate description of performance for a likelihood ratio computing
device is its detection and false alarm probabilities as a function of
decision threshold. The precise definition of these terms (which arise
from within a RADAR and SONAR context) now will be given.

Since the likelihood ratio is simply a transformation of random vari-
ables (the observation vector R) to a one dimensional decision statistic
(A(R)), the likelihood ratic itself will be a random variable whose

probability density function will depend on which hypothesis (H0 or Hl)

NS L B PR > e - f:w‘.
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is actually active on R. Recalling from (2.2) that the threshold n divides

S v g

the decision space, define

-]

[ pCA[H)) e (2.20)
n

ne

A
pp 2 p(D, |H))

L

Y
SINEESE)

[
A A
pp = p(D, [Hy) & In p(A[H)) an . (2.21)

St
[l

Peterson, Birdsall, and Fox introduced a graphical representation of PD i!
versus PF as a function of n known as the ROC (gpceiver operating charac- l
teristic) curve (Peterson, Birdsali, and Fox, 1954). The ROC curve will ol
be the means by which performance of the detection receivers discussed in
this dissertation will be evaluated and compared.

In general, the entire ROC curve is necessary to completely specify
performance. However, in the classic SKE in WGN problem (Hl: signal known

exactly + white Gaussian noise vs. H,: white Gaussian noise alone), per-

o
formance is summarized by a single number known as the detectability index
d2. In this case, the distribution of £(R) = 1nA(R) is Gaussian under

Hl and HO with equal variances of 2B/N0 and means separated by 2E/NO
(E = received signal energy; NO/2 = noise power spectrum height). By
definition (Van Trees, 1968)

[E(llﬂl) - E(2|H0)]2
var(zlno)

N
e

(2.22)

t

|
B

Detection and false alarm probability expressions corresponding to (2.20)

and {2.21) are

_ inn 4d
Py = erfe, ( T - 5) (2.23)
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PF = erfc*(-T" + 2) (:2.2‘4)
R | x2
erfc, = | ——exp(- 3 ) dx . (2.25)
% /7% 2

The SKE performance curves are illustrated in Figure 2.1 on normal-normal

paper. Note that performance increases linearly on the negative diagonal

% as a function of d.
3

e Block Diagrams and Sufficient Statistics

From the preceding discussion, it has been shown that once the likeli-

hood ratio was determined, A(R) could be implemented in various structures
which might look quite different. Perhapes the epitome of this is in
~j Birdsall's two step approach where the primary processor might take on

any one of an infinite number of structures depending on the tractable

prior chosen. Nevertheless, it is quite common for those of us engaged

in optimum receiver design to look for structural pieces in our particular
realization of A(R) that might be either the same as, or in contrast to,
structure arrived at by other ad hoc approaches to the same problem. The
contention here is that perhaps toomuch emphasis ha.;s been placed in the
past on the overall structure of A(R) instead of some more fundamental
component pieces. A solution for the likelihood ratic not in closed

form always has appeared only half completed.

. The expression in (2.3) shows that the fundamental components of

A(R) before the introduction of a particular a p~ ‘ori knowledge are the

[P

conditional densities of R under H) and Hj. Assuming p(R|6) admits a

sufficient statistic for 6, (2.12) shows that the two basic building blocks

e Sy

are the sufficient statistic §(R) and G(R). In general, no matter what

a priori knowledge is chosen, §(R) and G(R) will have to be calculated
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under Hl and HO‘ Any final structure of A(R) will always be a function of

%y
s

these basic parts and it is their structure which will provide the most

fundamental basis from which comparison with other detectors can be made.

- e
[ S—

As an example, a recent paper by Adams and Nolte derives and discusses the

interpretation of these basic components for optimum array processors in P

p——
[

fluctuating ambient noise fields (Adams and Nolte, 1975).
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Figure 2.1. Performance of the SKE Processor.
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OPTIMUM ARRAY PROCESSING i
18

A rigorous approach to signal detection theory from a Bayesian point e
of view has been established. The desire now is to apply these general z} 4
concepts to the optimal processing of data from an array cf sensors. It é
1

[IR AT
Saprosanced

should be emphasized that the Bayesian approach is global in the sense
that no processing structure (such as a beam former) is assumed from the
beginning. Rather, the mathematics (which results in structure) is allowed
to evolve freely cut of the problem statement with the unprocessed outputs T
of each array element taken as observables. Furthermore, since the like-
lihood ratio will be used as the decision statistic, the only complete
description of array processor performance will be in the foem of an ROC
curve. i

The particular interest in this dissertation will be the general

formulation of sequential array processors when there is directional \

uncertainty. Cases will be counsidered where there is both a far field

AR !
A e e e

directional signal source and noise source in addition to an independent

additive noise component at each array element.

Literature Review

Cmen SR b e

The Bayesian approach to array procescing has been discussed in the

literature since the early 1960's. Untortunately, there have been few

instances where the likelihood ratio processor's performance has been

given in terms of the ROC curve. Quite often, other performance measures

are used (such as array gain) which are not the optimality criterion under

P D S e 0. O
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which the processor was designed. A brief <ummary of the literature related

Gt
3

o

to this dissertation is given below. An excellent topical and chronological

e o K cbab £ 7525 20X
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review of optimum array processing =an be found in a recent dissertation

Ry haitn )

¥
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E by Adams (Adams, 1973) and paper by Adams and Nolte (Adams and Nolte, 1975).

The earliest attempts to derive Bayes optimal array processors assumed

S
Sz
s

known directional s. .ual sourc: : and noise fields which at times contained

R T o R

ia a highly directional additive component of knouwn location. Bryn was the

s et
LY

[ first with his paper in 1962 on the detection of a Gaussian signal in
{

A

Gaussian noise (Bryn, 1962). His formulation used a truncated power series

st

expansion for the likelihood ratio which was optimum at low signal-to-

EeARTAR
o m—a—r
.

noise ratios. Unfortunately, Bryn's evaluation of performance was in

ERALasD

=5
L

terms of array gain instead of detectability. A short time later, Middleton

T
.

and Groginsky discussed in general terms the same problem without making a

= :

"=
PSS

low signal-to-noise ratio as.'mption (Middleton and Groginsky, 1964).

Their study was mainly concerned with factorization results (i.e., the

splitting of processor structure into a spatial component independent of
noise stutistics and a component dependent oniy on the statistics of the
signal and noise random processes) and no performance was given.
Schultheiss also considered the problem of detecting a Gaussian signal

: in Jaussian noise (Schultheiss, 1968). His analysis centered on the benefit

of likelihood ratio processing over conventional beam forming when a major

component of the noise field was highly directional. True detection

performance was calculated based on a low signal-to-noise ratio assumption.
Another paper which quickly followed Bryn's was the first to desl

} with detecting a signal of known form in Gaussian noise (Stocklin, :963).

Stocklin's work is to be noted for its complete analysis from likelihood

N . , L. . ., . . s eecrmicy 2OL 225 .
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ratio thvough ROC curve. In 1964, Mermoz discussed the same problem from -
a different point of view (Mermoz, 1964). His approach was to postulate zﬁ
a linear structure consisting of filters at each array element whose N
outputs were then summed together. The filter transfer functions were &f
calculated which maximized the signal-to-noise ratio at the summing junc- {;
tion. For this particular problem, the resulting processor is identical g
to that of the Bayes optimal array processor. As in Middleton's and l'

Groginsky's work, a major contribution of this paper was in its factori-

[—

| N——

zation results. Mermoz's analysis also is presented in a book by Horton

(Horton, 1969). ii
Several years later, the solutions due to both Bryn and Mermoz were v

rederived by Cox from within a common mathematical framework using the {j

Schwartz inequality to maximize the detectability index (Cox, 1968; Cox, f

1969). Particularly well presented is the concept that such seemingly L}

Al
+

diverse problems are actually closely related. In addition, the 1968

-
S

e

Le—-

paper gives an excellent discussion of detection theory results in terms

of complex random vectors with emphasis on the trigonometric Fourier series.

e
L._.,..{'

The incorporation of directional uncertainty into Bayes optimal array

s -

3

~ ———

processors has occurred only recently. Young and Howard modeled their
signal as having a uniform a priori location distribution over a particular
- field of interest (Young and Howard, 1970). Performance was given in

terms of average risk. In addition, average risk for the optimal processor {1
was compared to that of the conventional beam former as a demonstration

of the latter's rather severe sensitivity tc location uncertainty. The }‘

next significant st:» was taken by Gallop and Nolte (Gallop, 1971; Gallop
and Nolte, 19:'> “welr analysis alinwed signal location uncertainty to

be modeled a. .y on' -* a continuum of a priori densities, extremes of ‘

O
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SRR




T o T v 3

Pdes &

o by
o i Ol g ke by

5

T T T e R B Y N T 3 T e Y A S v o A B

gny

}

21

Lz
‘-u.

which were uniform knowledge on one end and certainty of location on the

A
§ -~ s

other. Sets of ROC curves representing various levels cf location uncer-

JUDORNRNBARE PES 020 ad Y0

tainty were given.

A general approach to the derivation of array processors for sources
of known location was proposed in a paper by Adams and holte (Adams and
Nolte, 1975). Particular emphasis was given to receiver structure, factor-
ization results, and performance when the noise field contained an additive
component from a fixed far field location. Additicnally, Adams also has
pursued the derivation of likelliood ratio expressions where either the
signal or directional noise locations were uncertain (Adams, 1973). No
performance for these cases was presented. Essentially, the work in this
dissertation is an extension of that by Adams to the consideration of the
sequential implementation of array processors when there is directional

uncertainty and the calculation of perfurmance for several specific

problems.

Trigonometric Fourier Series
The application of classical statistics to optimal detection theory
requires a finite dimensional vector of observables whose joint probability

density function under Ho and HL is used to form the likelihood ratio.

Typically, the array elemen* outputs will be a collection of continuous
time waveforms. Some mapping then must be used to carry this space into
into a space of finite dimensional vectors. Three well known approaches
to this transformation are: (1) time sampling, (2) the Karhunen-Loeve
expansion, and (3) the trigonometric Fourier series. The selection of

a particular mapping is heavily problem dependent. A wise choice can

often greatly simplify the mathematics of the likelihood ratio. Adams
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showed that the third approach led to a signif?cant amount of tractability,
especially when the noise field contained an additive source in the fav
field (Ada: -, 1973; Adams and Nolte, 1975). The trigonometric Fourier
series will be used throughout this dissertation. Basic definitions and
results for the characterization of random processes follow (see also
Papoulis, 1965, and Van Trees, 1968). |

What we desire is a series expansion valid for sample functions z(t)
from a zero mean stationary random process over the interval (-T/2,T/2).

Written as a Fourier series

N
z(t) = L.i.m. [ z(n) (%)1/2 exp(inugt) , |tl<T/2 .3.1)
N+o n=-N
where ng = %}
T/2
and z(n) = (%01/2 [ 2(t) exp(-jnwot) dt . (3.2)
-T/2

Convergence is in the mean square sense (Papoulis, 1965). The notation

"l.i.m." denotes limit in the mean which is defined as

N

1 1/2 2
lm E[(z(t) - ] z(n) () exp(inugt)) 1=0, Jt|<1/2. (3.3)
N n=-N

Since z(t) is a random process, z(n) will be a rand:m variable and

(Paponlis, 1965)

N(nwo) , N =m
1im E[z(n)z(m)*]= (3.4)

T+e 0 s NEM
where N(nwo) is the power spectral density of the random process and "*"
denotes conjugate transpose. Thus, as the cbservation interval T increases,

the fourier coefficients at different quency indices become uncorrelated.
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The series in (3.1) can be truncated at any N with a corresponding
representation error. The expression in (3.3) guarantees that the expected
value of this error becomes smaller as N is increased. Particularly with
bandlimited random processes, {3.4) indicates that the expected value of
error will be negligible when N = 2nw/w0 (W the bandwidth in Hz.) for T
taken sufficiently large. Under these conditions, we will say that the
real sample function z(t) can be mapped into the finite dimensional vector

2z where

z = [2(0),...,2(1)] (3.5)

the "T" denoting transpose. Coefficients with negative indices are not
written since for real functions z(-n) = z(n)*. Considering such a finite
dimensional representation, if z(t) is replaced by its series expansion as
in (3.1), then the energy of the sample function over the observation

interval (-T/2,T/2) can be approximated by

T/2 N

[ a(t) « z(x) dat = [ z(m)* z(n) . (3.6)
-T/2 n=-N

From (3.4), we see that for I sufficiently large
T/2

N
EC] 2(t) » z(x)at] = } N(nwy) - (3.7)
~-T/2 n=-N

The discussion so far has emphasized random processes., Convergence
in the mean square sense guaranteed that almost every sample function
could be represented by its series expansion. More strict conditions can
be applied in the case of a deterministic time wuveform s(t). Since
{(l/’l‘)l/2 exp(jnwot) ; n = -»,,., o} forms a complete orthonormal set,

then for all s(t) with finite energy in the interval (-T/2,T/2)

N APt s o =
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N 1/2
s(t) = lim } s(n) (%0 / exp(jnwot) s |t|<T/2 (3.8)
N+w -N
_2n
where Wy = F
1/2 [T/2
and s(n) = (—l- / / s(t) exp(-jnw. t) . (3.9)
T L 0

Again, convergence is in the mean square sense with (Van Trees, 1968)

T/2 N 1.1/2 2
lim [ [s(t) - § s(n) (7)) exp(inuyt)]” at = 0. (3.10)
N+eo -T/2 n=-N

Furthermore, the energy of s(t) over the observation interval (-T/2,T/2) is
T/2 o

[ s(t) e st)dt = ] s(n)* s(n) (3.11)
-T/2 n=-

which is simply Parseval's theorem.
The optimal array processors to be considered in this dissertation

observe a vector of real time waveforms on the interval (-T/2,T/2)
2(t) = [z (t),u.. 2, (£)T (3.12)
— 0 "C.’ K—l

where the subscript denotes the array element. Making the assumptions that

led to (3.5), let

1.1/2 1/2 .
zk(n) = (TO !T zk(t) exp(—jnwot) dt (3.13)
- /2
z(n) = [zy(n),.. .,z (W] (3.14)
and z = z(0),..., 20T . (3.15)

In this way, the time waveforms observed on the K elements are mapped into
a Ke(N+1) dimensional vector. Note that the Fourier coefficients for a

single frequency index n and all K elements are grouped together.
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Multivariate Complex Gaussian Distributions

The particular arrangement of Fourier coefficients in the vector z will
lead to certain mathematical simplifications in the likelihoed ratio calcu-
lations to be discussed later. In preparation, this section will develop
the necessary theory of multivariate complex Gaussian distributions. The
presentation closely follows that of Adams and Nolte (Adams and Nolte, 1975)
vwhich is based on Goodman (Coodman, 1963).

First, we will need definitions for complex Gaussian random variables
and vectors. A complex Gaussian random variable is defined to be a complex
random variable whose real and imaginary parts are bivariate Gaussian. A
complex Gaussian random vector of dimension p is defined to be a p-tuple of
complex Gaussian random variables such that the vector of real and imaginary
parts is 2p-variate Gaussian.

Consider the complex Gaussian random vector z which can be written
z=x+ iy, (3.16)

Our attention will be restricted to complex Gaussian random vectors whose

covariance matricies are of the following special form. Both X and y have
covariance matricies which are equal to 1/2 V, where V is a symmetric,
positive semi-definite matrix. The covariance of x and y is assumed equal
to 1/2 W, where W is skew symmetric and
E [x - EG)Ily - BT = 2w
X X b 2
(3.17)

E [y - EpIx - B =2 -

Under these conditions, the p-variate complex Gaussian distribution of z

is given by {
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p(z) = ——— expl-(z-m)*Q " (z-m)]  (3.18)
g }
m = E{z} (3.19)
and Q = El(z-m)(z-m)*} = ¥ + iW . (3.20)

The Likelihood Ratio and Arry Processor Structure

The results of Chapter II will now be rewritten in the context of
optimal array processors. The real random processes observed at the output
of each array element will be assumed stationary and jointly Gaussian.
Since (3.13) indicates that the Fourier coefficients at a particular element
are simply linear functionals of a Caussian random process, the real and
imaginary parts of each zk(n) will be bivariate Gaussian distributed
(Van Trees, 1968). Thus, zk(n) is a complex Gaussian random variable.
Furthermore, since the observed random processes are jointly Gaussian, the
collection of real and imaginary parts of all the Fourier coefficients will
be jointly Gaussian (Van Trees, 1968). Thus, 2z is a complex Gaussian
random vector of dimension Ke(N+l).

Consider the array detection problemwhere the observables consist of
Ke(N+1) Fourier coefficients arranged as in (3.15). The two mutually

exclusive and exhausive hypotheses will be

Hy : z = n(8,)
(3.21)
Hy 2z =s(8;) +n(8,)

where gﬁgo), gﬂgi), and Eﬁgi) are noise and signal vectors written expli-
citly as functions of parameter vectors goE GO and g_le 61. 8ince z is a

complex Gaussian random vector, the likelihood ratio is written as

PR dlous B vl BN dpont

pr—=

Iovawmemnary ¥
<, .

fomrmm
| N,
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- ] L expl-(z-m, (8,170 1(8, )z, (8.)Ip(e, )d8
o e, 100871 A A R R |
@ AMz) =
= 1 * -1
3 Ieo @ expl-(z-m (8,) Q “(8,)(z-m,(8,)Ip(8,)dg,
2 E (3.22)
3
S vhere m(6) = Elaloy ) 5 mo(ey) = Blzlogiy)
A and p(Qi) and p(QO) are a priori probability density functions.
3 . priori
'33 " As a specific example, A(z) for the problem of detecting a signal known
;? i exactly in bandlimited white Gaussian noise is easily written. Since there
5 L
2? are no uncertain parameters under either hypothesis and m, = 0, (3.22)
5 | | becomes
2 Mz) = expl-m"Q"Im + 2 Re{z*Q m}] (3.23)
where m=m
Q=9 =9 |
and "Re" denotes the real part.

Recall that the performance of this processor is completely specified
by the detectability index d° (see (2.22)) which has the value
a® = 2 n*g7lm . (3.24)

Note that under the condition in (3.4), the covariance between any
two Fourier coefficients at different frequency indices will be zero. Thus,
the covariance matrix Q will be block diagonal (KxK blocks) and its inverse

also will be block diagonal. The expression in (3.23) can be rewritten as




R e S y
.
. - ,.,w-.,.ws.»wx-vmz\mwu.\ 3
Y

i

28
N 1 N o1
A(z) = exp[- | m(r)"Q “(n)m(n) + 2 Re{ J z(n)"Q “(n)m(n)}]
n=0 n=0
N -1 -1
=TT exp[:m(n)*g. (n)m(n) + 2 Re{ggn)*g_ (n)m(n)}] (3.25)
n=0
where m(n) = E{gﬂn)lHl} (z(n) as in (3.14))
and Qn) = E{[g(n)—m(n)][g_(n)-m(n)l*lﬂl}.

The likelihood ratio has been broken into its "single frequency"
components. This is the reason for arranging the Fourier ccefficients in
the observation vector z as shown in (3.15) and such a decomposition will

be valid for all problems where the condition in (3.4) has been met.

Table 3.1 summarizes the likelihood ratio expressions for three realiza-

tions of the array processor structure: (1) one shot, (2) pseudo estimator,
and (3) two step. Figures 3.1, 3.2, and 3.3 illustrate their corresponding
block diagrams. Discussion of the sequential structure is postponed until
suitable conditions on the length of the incremental cbservation interval
have peen established so that both the expression in (3.4) still may be
considered valid and parameter conditional independence between successive
observation increments is assured.

The fundamental form of the likelihood rativ is found in the one shot
optimal array processor given in Table 3.1 A and illustrated in Figure 3.1.
In this structure, all of the data is processed at the same time and the
likelihood ratio is obtained directly. Once the mathematics of the likeli-
hood ratio has been written, however, any realization of A(z) will achieve
the same performance. As mentioned in Chapter II, structuring the optimal
processor in various ways often can be advantageous from the standpoint of
any potential insight gainc , comparisons with non-Bayesian approaches to a

similar problem, or the desire of greater feasibility and flexibility of

implementation.
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The pseudo estimator structure given in Table 3.1 B and illustrated in

Figure 3.2 provides 3 means of comparing the cptimal array processor with a

popular ad hoc detector structure. An appealing approach to an array

detection problem where uncertain parameters exist is to es’ " _te these

N

parameters and then plug them into the conditional likelihood ratio as if

they were known exactly. When "good" estimators are used, such a structure

as illustrated in Figure 3.4 appears to be operating in an optimal fashion.
The processors of Bryn (Bryn, 1962) or Mermoz (Mermoz, 1964; Horton, 1969)
typically are assumed as implementations of the conditional likelihood ratio.

Examples of such ap approach are the papers by Chang and Tuteur (Chang and

Tuteur, 1971) for the detection of a Gaussian signal of known direction in a

Gaussian noise field of unknown statistics and Bienvenu and Vernet (Bienvenu

and Vernet, 1972) discussing a similar problem where the signal is of known

form instead of Gaussian. Anothepr example is the paper by Giraudon

(Girauden, 1972) fop the detection of a known form signal of known direction

imbedded in a non-stationary noise field. It is not clear, however, that

Piecing together locally optimal techniques (i.e., "good" estimators and a

solution optimal when all parameters are known) will yield global optimality

when the overall goal is good datection performance. Note hat the struc-

s e A * *
tures in Figures 3.2 and 3.4 are equivalent only when 21 = 91 and %

are the pseudo estimates of 21 and 90' Recalling from (2.7), utilizing the

-

<L<D>

pseudo estimates results in the lower branch of Figure 3,2 equaling unity,

Thus, the optimal array processor can be realized in an estimate and plug

structure. It should be noted that the pseudo estimate is generally not

equal to a well known estimate,
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The third realization of the iikelihood ratio as a two step processor

is given in Table 3.1 C and illustrated in Figure 3.3. The usefulness of

Ao
| S

this structure is that potentially a major portion of the optimal array

e
[

processor can be designed without knowing the exact a priori knowledge,
Thus, a certain degree of implementation flexibility is achieved. The two i
step approach provides the basis for the general time sequential array

processor structure discussed in Chapter V.
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Summary of Array Processor Structures

A. One Shot

where

and

fgl T exp[-(_z_—Ln_l(gl))*_Qil(gl)(g-r_gl(gl))]p(g_l)dgl

Mz) = —

l * “l
feo e, expl-(z-m.(8,)) 9, (go)(g-r_no(go)np(go)dgo

p(Qi) and p(go) are a priori probability density functions.

B. Pseudo Estimator

where

and p(golg,ﬂo) and p(gilg,ﬂl) are a posteriori probability density functions.

C. Two Step
o (80" (8, 576
T, TP 0
A(z) = A'(z) X
1 .
[Oo m(89)p" (2931548,
0
= ' .
where p(gi) r(8,)p (Qi,xi)
— - o
p(8,) = r(go)p'(go,lo)
and

_ P(8Ip(8, 2,1 )

A(z) Mzle, ,8,)

) ® -1 _
Mo, 0, - [RCNY expl-(z-m, (8,))Q;"(8, )(z m, (8,))]

1,01 expl-Cz-my(8,0) 05 (0, (z-m (8, )1

P'(Qi;xg) and p'(go;xg) are the natural conjugate

a priori probability density functions used in forming
A'(2).
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arising from adjacent observation periods would be desirable since it can
lead to 2 convenient implementation of the sequential array processor via
(2.8), (2.9), and (2.10). Recall that when the observables are jointly
Gaussian, zerv covariance implies independence. In this chapter, equations
will be derived which express the covariance between the Fourier coefficients

explicitly as a function of observation period length.

Covariance Arising From a Scalar Random Process
Let z(t) be a sample function from the zero mean stationary random
process cbserved at the output of a single array element. The Fourier

coefficients for this time waveform will be as defined in Chapter III

1/2 T/2
2(n) = (&) [ z(t)exp(~jnw_t)dt (4.1)
T 1/2 0

where W, = =,

The expression in (3.4) indicates that the Fourier coefficients at different
frequency indicies become uncorrelated as the observation interval T
increases. Unfortunately, little in insight is gained as to how fast this
occurs. The derivation in Appendix A due to Blachman is most beneficial

to this respect (Blachman, 1957). Summarizing those results

©0

E[z(n)z(m)*] = [ N(xwo)sinc(x—n)sin(x-m)dx (4.2)

-0

where N(xmo) = the power spectral density function of the random process

sin(wx)

(mx)

and sine(x) =

PYRRURPrOS




. e L s 2 e L s

Note the orthonormal property of sinc(x)
(-]
| sine(x-n)sinc(x-m) dx = & (4.3)
-00 nm
o _J1l, n=m
where 6m = 0. n#m

The variance and covariance of the Fourier coefficients now easily can be
pictured as areas under a curve. The integrand in (4.2) is illustrated
graphically in Figure 4.1 for two specific cases of the following expres-

sions

(1) variance

-]

Elz(n)z(n)*] = / N(xwo)sincz(x—n) dx (4.4)

-00

(2) Covariance

-]

E[z(n)z(m)*] = f N(xwo)sinc(x-n)sinc(x—m) dx . (4.5)

-C0

Two conclusions may be drawn
(1) Variance
As long as N(xwo) is approximately constant within 2wo or 3w0

either side of nwy, then
E[z(n)z(n)"] = N(noy) . (4.6)

(2) Covariance
As long as N(xwo) is approximately constant over the interval

where the product sinc(x-n)+sinc{x-m) has appreciable value, then

ELz(n)z(m)*] = 0 , n#m. (4.7)
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Essentially, increasing the observation interval leads to a smoothing of
the power spectral density function when it is written as a function of

X (as T+ w, w, = 20/T + 0). Thus, for a given random process, (4.6)

0

and (4.7) may be considered valid if the observation interval is chosen

long enough so that the power spectrum N(xwo) is relatively smooth with

respect to increments in Wy
A particular power spectrum often assumed is that of bandlimited white

Gaussian noise

No/2 , |w] < 2mW

N(w) = (4.8)
0 , otherwise

where W is the bandwidth in Hertz. It is interesting to observe how the
elements of the covariance matrix associated with such a spectrum change as
T is allowed to increase. Appendix B contains a set of five such matricies
which represent successive doubling of the observation length (Marshall,
1973). The first matrix is for an observation length such that W = .5w0/2ﬂ
or T = ,5/W; the last matrix is for an observation length such that

W= 8w0/2ﬂ or T = 8/W. As T increases, the matricies become progressively
more diagonal in form. Roughly, a condition on the observation length can
be established on the basis of the last matrix. With reference to the unit
height spectrum, for at least 80% of the Fourier coefficients (0 < n < N)

to have the following properties

(1) .95 < E[z(n)z(n)*]
(4.9)

(2) |ECz(m)z(m)*1] < .02

then 2WT > 16. Note that this is on the order of the usually assumed con-
dition arising in the uniformly spaced time samples approach to random

process representation (i.e., 2¥T >> 1).
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Covariance Arising From a Vector Fandom Process

The previous section dealt only with the covariance between Fourier
coefficients representing the time waveform observed at a single element.
Presumably, the observation length will be chosen so that (4.6) and (4.7)
may be assumed valid. Now, let gﬁt) be a vector of sample functions from
the zero mean stationary vector random process observed as the collection
of outputs from all the array elements. The Fourier coefficients for these

time waveforms will be defined as in Chapter III

1.1/2 T/2 )
z, (n) = (3) / z, (t)exp(-jnw _t) dt (4.10)
k T k 0
-T/2
. = 2"
“here Wy = F
and k = the array element index.

Since the relationship between the coefficients representing a single
element's output has already been discussed, it remains to consider pairs
of Fourier coefficients arising from two different elements.

Clearly, if the random processes observed at all the array elements
are independent of one another, their respective collections of Fourier
coefficients alsc will be independent. Such will be the case when we
consider independent sensor noise in the problem formulations of Chapter VI.
A different situation arises when the noise field contains an additive
directional noise component. Now, a portion of the random process observed
at one element simply will be a time delayed version of that observed at
another. Given that the observation length has been chosen long enough
so that (4.6) and (4.7) may be assumed valid, then any two Fourier
coefficients at different frequency indicies will be approximately

uncorrelated. However, coefficients at the same frequency index will be

or s dn

Bt
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related as shown in Appendix C. Summarizing those results

o T
E[zz(n)zk(n)*lrzk] = exp[—jnworzk]o[wD(xwo)sincz(x-n)exp[-j(x~n)(-—%502n]dx

(4.11)

h

where t1,, is the time delay between the zt and kth elements of the direc-

2k
tional noise component d(t) and D(xwo) is its power spectral density
function. Note that if the reception situation is such that plane waves
are incident across a uniformly spaced linear array, then T, = (k-l)Tn
where 3118 the time delay of d(t) between adjacent elements. As before,
the covariance of the Fourier coefficients can be pictured as the area
under a curve. The r2al part of the integrand in (4.11) is illustrated
graphically in Figure 4.2 for the case Tzk/T = 1/4. Two conclusions may
be drawn

(1) As long as D(xwo) is approximately constant within 2w, or 3w,

either side of nw,» then

& ) Tok
E[zz(n)zk(n) Ile] = exp(-jnmorzk) . D(nwo) . { ) -

(4.12)
(2) As long as D(xwo) is approximately constant over the interval
where the product sinc(x-n)esinc(x-m) has appreciable value,
then
y¥

E[zz(n)zk(m .] =0 , n¥fm. (4.13)

Thus, for a given additive directional noise component, (4.12) and (4.13)
may be considered valid if the observation interval is chosen long enough
so that the power spectrum D(xwo) is relatively smooth with respect to

increments in Wy

~

———

PO

-y




Ll

Lantd

Rl

43

heU

[42(-H(u-x)s00 £ s
1

u-x)_ou
(u-x)_ours

wT = o
“(TT'h) UT pueaBaqul aY3 Jo Jaeg TEOY -2 °H san3tg

T )

)




T A R R3OS TITRT T # SE e PeS T

RIEN g 3 2%
XTI T Y G AT A AT X

4y

Covariance Between Adjacent Observation Vectors

When the total observation period is broken into several smaller incre-
mental periods each of length T, a sequence of observation vectors will re-
sult. The real random processes observed at the output of each array element
will be assumed zero mean and stationary. Assuming T is chosen long enough
so that (4.6) and (4.7) may be considered valid, then two Fourier coeffi-
cients at different frequency indicies and in adjacent observation vectors
will be approximately uncorrelated. Coefficients at the same frequency
index are related as discussed in Appendix D. Summarizing those results
for the case of independent sensor noise

E[zi(n)zi+l(n)*] = f N(xwo)sincz(x-n)exp[-j(x—n)2w] dx (4.14)

where 3} and E}+l are adjacent observation vectors and N(xwo) is the power
spectral density fun~tion of the independent noise. And, for an additive

directional noise component

*® T

E[zi(n)zi+l(n)*lrlkJ=exp[~jnw f D(xu, )sinc2(x- n)exo[-j(x- n)(l-~——02ﬂ]dx

0 zk‘
(4.15)
where D(ch) is the power spectral density function of the directional
noise. Twc conclusions may be drawn
(1) As long as N(xwo) is approximately constant within 2m0 or 3u,

either side of Dwy s then for independent noise

Elz) <n)z”1(n)*1 =0. (4.16)

(2) As long as D(xwo) is approximately constant within 2w_ or 3”0

0

either side of w5 then for an additive direction noise component

X
. ) . . . lk
E[Zz(n)z (n) lT =~ exp(-]nwo‘rzk) D(nwo) {_1 I T -5}

(4.17)
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Thus, (%4.16) and (4.17) may be considered valid if the incremental observa-
tion length T is chusen long enough so that the power spectra N(xwo) and

D(xwo) are relatively smooth with respect to increm>nts in Under these

o
conditions plus the additional requirement that Tox << T, Fourier coeffi-
cients within adjacent observation vectors will have a parameter conditional
covariance of approximately zero.

The covariance expressions discussed in this chapter are summarized

in Table 4.1. Both the exact expressions and those conditioned on a

sufficiently long incremental observation length are given.

I - e - ok




370 it
Eaparmm— ety vy

e e 3 5o AR b

.

- )

Covariance Between the Fourier Coefficients

~

ot

~
1}

Let 2 nk(t) + do(t - rok)

output observed at the kth element

1)

where z (t)

nk(t) = independent noise component at the kth element
do(t) = directional noise component at the oth elemen.
Tok = time delay of directional component between the £tR ang

kth elements.
A. Covariance Within a Single Observation Vector g}
i i, (&
E[zg(n)zk(m) szk]

o T
=exp[-jnmoigk]-[£N(xwo)-62k+D(xwo)]sinc(x—n)sinc(x—m)exp[-j(x—m)Gﬂ%?5)2n] dx

where 62k = 0 . 27k

N(xwo) = power spectral density function of the independent noise
component
D(xmo) = power spectral density function of the directioral noise
component.
B. Covariance Between Adjacent Observation Vectors g} and g}+l
E[zi(n)zi+l(m)*lrzk]

=exp[-jmmo(T-rzk)]°{£N(xab)'6£k+D(xwo)]sinc(x-n)sinc(x-m)

T
exp[-j(x-m)(1 ~ —%E)2ﬂ] dx .

Table 4.1
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Now, assume that the incremental observation period is chosen long enough
so that the power spectra N(xwo) and D(xmo) are relatively smooth with
respect to increments in Wy

C. Covariance Within a Single Observation Vector g}

. T

et i 3 . . . _E,E. .
Elzy(n)z (|1, J=expl-jma, T, I [N(nu )+8, +D(ma )]* € ~« £y .6
D. Covariance Between Adjacent Observatica Vectors g} and §}+l

. 141 L Tox

1 l+ * 03 - .
Elzy(n)z, " (m) Itzk]=[-3mwo(T—tzk)]°[0+D(nuo)]° { - "%

-1 012

Table 4.1 (continued)
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Chapter V

TIME SEQUENTIAL ARRAY PROCESSOKS

The general design equations for sequential data processing were given
in (2.8), (2.9) and (2.10). No specific restrictions were made on the
nature of the observation vector (i.e., EK could be a collection of uni-
formly spaced time samples of an ongoing waveform or perhaps the Fourier
coefficients of a fixed length signal). When the Ri are uniformly spaced
time samples, sequential processing leads to a natural learning feature
with time as more observations are processed. The frequency domain analog
for a fixed length signal exhibits learning, not in time, but in frequency
sequence. The thrust of this chapter will be to propose a model of waveform
representation which breaks the total observation length into a sequence of
fixed length incremental observation intervals and then to analyze the

consequences in terms of time sequential processing utilizing Fourier

coefficients.

Time Sequential Structure*

Consider the vector of stationary randem processes z(t) as in (3.12)
which is the vector of observed outputs from each array element. Based
on some criterion (as yet unchosen), pick an incremental observation
period and break z(t) into time sequences of length Tinc' The corresponding
vector of Fourier coefficients representing the ith period will be EF
as in (3.15). Thus, for a tccal observation length of T = L.Tinc’ z(t)

will be represented by L vectors of Fourier coefficients, (E},...,EP).
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In the formation of the likelihood ratio, the marginal distribution of
the observables conditional to each hypothesis is needed. Our observables

are now the L vectors (51,. .. ,gL). Suspending the conditioning to H, and

) 1
. ”0 L
p(z',.. 2" = T p(z]z" . 2
=1
‘ b4y i i
= fe TT etz ]z ", ..,z ,8)p(8)d0 . (5.1)
, i=1
L.
Assuming parameter conditional independence of the g} ‘
)
{ iy i-1 - i
plz |27 ,...,2z58) = p(z|0) . (5.2)

Substituting (5.2) into (5.1)

1, .
plz'se.nz™) = [ TT p(zte)p(e)do (5.3)
izl

Lastly, applying Bayes' rule L times tu the integrand in (5.3)

L . .
pzhs-nz™ =TT 4y pEHodpcelz2 ™, zhae (5.w) s
i=1

where p(ﬁlgl-l,.. . ,_z_l) is the updated version of the a priori probability

density functicn of §

. i-1 i-2 1
p(g_!_z_l'l,...,g_l) _ p(z 7 |opte)z e, L2 ) (5.5)
i-1, i-2 1
p(z ™z 74, ,20)

Sequential processing in time as summarized in (5.4) and (5.5) now can be

accomplished using observables taken in the frequercy domain to form the

marginal distributicns required to calculate the likeiihood ratic

pz,... 2" [H)

1l L
Az ...,z ) = - . (5.6)
- - 1 L
p(z75...,2 IHO)
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Figure 5.1 illustrates the corresponding array processor structure.
Note that at the end of each incremental observation period, the prior

knowledge for that period is updated under Hl and H_ to reflect the pro-

0
cessing of an additional increment of data. These updated densities then
are used as prior knowledge for the next incremental observation period.
The essential advantages of structuring frequency domain array
processors in a time sequential fashion are
(1) No need to specify a priori the total observation length.
Normally, the number and location of frequency samples is
dependent on the total observation length through wy = 2u/T.
Operating sequentially, we fix the incremental observation

period T,  and thereby fix w. = 2v/T, for any T = LT, .,
inc inc

0 inc

L an integer. Thus, the processor structure remains fixed
for any total observation length.

(2) Elimination of a linearly growing memory requirement. As
mentioned in (1), the number and location of frequency samples
is dependent on T for the one shot processor. When T doubles,
the number of frequency samples collected for a given band-
limited observed random process doubles, etc. Thus, twice
as many Fourier coefficients must be remembered and manipulated
to calculate the likelihood ratio. The sequential structure
eliminates this difficulty by permitting the processing of
(1/L) the total number of Fouwrier coefficients at the end
of each incremental observaticn period.

(3) The learning or adaptive features in time which take place

naturally with a time sequential Bayesian processor.
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Single Frequency/Conjugate Prior Decomposition

Now, make the additionai assumption of parameter conditional indepen-

e e L e T A e W P et — bl b il AR
AR RN SR e e e S S [N e ——
e e - e—————— Iy .

}.1

porrm—
[S——

dence between Fourier coefficients at different frequency indicies and within

the same observation vector
p(2(0),...,2°(N)[8) = p(z'(0)|8)...p(z" (M) ]8) . (5.7)

The resulting separation of the joint probability density function of the

observables in frequency modifies (5.3) to become

[o] pzro0)...pzt o) | ... | ptzl(o) o). . .p(z"0)[8) | pCo) a0

p(gllg) P(éLli)
st . . th . s
1" observation period L™ observation period
= [y | p(z10)]0)...p(z"®)]0) | ... | pzF W ]0)...p(z"(W)[0) | p(e) d8
(5.8)
Oth frequency Nth frequency

where p(g}(n)lﬁ) is the conditional density of the pth frequency component
of the ith observation vector as in (3.14).
Assume that ». the conditional densities in (5.8) admit sufficient

statistics of finite dimension for 8 (see Theorem 2.1, Chapter II). Let

p(8) = r,(8)p,(8) (5.9)

where po(g) is a natural conjugate prior under p(g}(o)lg) and ro(g) is as

in {2.16). Then, utilizing Bayes' rule

li(g_l(o)l_e_)...p(gL(O)lg) p(8) = | p(zt(0)]0)...p(z"(0)]0) ry(8) p,(8)

= p(21(0),...,2"(0)30 (8))p(8]21(0),.. . ,2"(0)3p (8)) 1 (@)

(5.10)
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where p(g}(O),...,gP(O);pO(Q)) is the marginal distribution of

(21(0),...,2"(0)) and p(8]z"(0),...,2"(0);p,(8)) is the a posteriori

distribution of 8 based on a prior of po(g). Next, let
L1 L
p(8]27(0),...,27(0);p,(0)) = r (8)p, (8) (5.11)

where pl(g) is a natural conjugate prior under p(g}(l)lg) and rl(g) is as
in (2,16). Continuing the alternate application of Bayes' rule and the

incorporation of natural conjugate priors for each of the N+l frequencies,

(5.8) becomes
P(zhsen2") = p(2H(0),0nt,25(0)5p,(8)). . p(ZM (W) 5,2 (N3P (8)

o To(®)+ - -m(@Ip(82 (W), ..,z (W) 5p (8))d8
N 1 L
= (T p(g_(n),...,g_(n);pn(e))}
n=0

N
o Jo AT 2 _(@)1p(0]z D), ... ,2"(W)5py (8))d8 - (5.12)
n=0

The notation

p(8]z (), ...,z m)sp_(8)) = v, (8)p_, (0) (5.13)

has been used to indicate the relationship between the a posteriori pdf
of 6 after (g}(n),...,gF(n)) has been processed and the a priori pdf of
8 used for processing (g}(n+l),...,g?(n+l)). Essentially, the data
dependency has been concentrated in rn+l(g) thus allowing freedom in

the choice of pn+l(§). Figure 5.2 illustrates the general array pro-

cessor structure implied by (5.12). The single frequency sejuential/conju-

gate blocks are the realizations of p(g}(n),...,gF(n),pn(g)); n=0,...,N.
Each is an independent time sequential processor similar to Figure 5.1

for a single frequency index using its own natural conjugate prior. Only
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the nth Fourier coefficient from each array element is utilized by the nth

block. The integral provides the correct matching between the outputs of
the N+l blocks and the actual a priori knowledge contained in ro(g) to
yield the desired marginal density of all the observables. Note the
particular form of this integral when uniform priors are admissible (and

so chosen) for the natural conjugate priors po(g),...,pN(Q)

N
fo (T =_(8)} pla]z (), ...,2"MN);p,(8))a8
n=_0 n

N
= ¢ [y p@TT palz'),...,z"(n)5p_(8)}a0 (5.14)
n=0

where C is a constant. The integral becomes simply a weighting of all the
a posteriori single frequency/conjugate densities by the true a priori
knowlezdge. To form the likelihood ratio, the marginal density of the
observables conditional to Hl is divided by the marginal density of the

observables conditional to HO as in (5.6).

The decomposition s 3gested by (5.12) is advantageous for the following
reasons
(1) Conceptually, the general array processor is seen to separate
into a few well defined components. In addition, since all
the sequential/conjugate blocks are mathematically similar,
only the nth frequency block must be derived in detail.
(2) Practically, a majority of the general array processor can
be designed without knowing the actual a priori knowledge.
Furthermore, the inherent mathematical tractability of
natural conjugate priors may be beneficial in the develop-

ment of the single frequency sequential/conjugate blocks.
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Mospassé

Criterion for the Selection of Tinc*

Derivation of the sequential optimal array processors in this chapter

nd

relied on the two assumptions of parameter conditional independence made

Snmnat g

in (5.2) and (5.7). Independence in time led to (5.3), and the addition

of independence in frequency parmitted the decomposition shown in (5.8). g

-

For jointly Gaussian random variables, zero covariance implies statistical

independence. Thus (assuming the observables have a parameter conditional i‘

et —

expected value of zero) (5.2) is valid when

o
S fo

E[zi(n)zi+l(m)*lgj =0 (5.15)
and (5.7) is valid when E}
E[zi(n)zi(m)*lgj =0, nfm. (5.16)

In this section, sufficient conditions for the selection of an
incremental observation period 'I‘inc are stated which insure the approximate
validity of (5.2) and (5.7) for a particular class of problems. In this ;'
class, the noise field is Gaussian and consists of a component indapendent |
from sensor to sensor plus an additive directional component. The dis- i
cussion in Chapter IV relates the covariance properties of the Fourier
coefficients to observation interval length for such a noise field. The
covariance expression corresponding to (5.15) can be found in Table 4.1 B
and (5.16) in Table 4.1 A.

Sufficient conditions for the selection of a Tinc are as follows

(1) The incremental observation period shall be chosen long

enough so that the noise power spectral density function

when writter as a function of xw, is relatively smooth with

0

respect to increments in w, = 2n/Tinc.

0
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(2) The incremental observation period shail be chosen long
enough so that the transit time across the array for the

directional noise wavefront ToK is much less than Tlnc'

The condition in (1) insures that any two Fourier coefficients at different

frequency indicies, be they within the same observation vector g} or within

. . i i+l . s
adjacent observation vectors z= and z , will have a parameter conditional

covariance of approximately zero

| E[zi(“)zi(m)*lﬁl =0 , n#m (Table 4.1 C)
i.
E[zi(“)zi+l(m)*|93 =0 , n¥m. (Table 4.1 D)

The additional condition in (2) insures that two Fourier coefficients at

the same frequency index and within adjacent observation vectors g} and
i+ . cos . . .

z 1 also will have a parameter conditional covariance ol approximately

2ero

i i+l %y .
E[zz(n)zk (n) |9_] - 0 ? Tgk i TOK << Tinc .

(Table 4.1 D)
Note that both conditicns (1) and (2) are necessary to approximate (5.15)
while only condition (1) is required to apprcximate (5.16). Once a T:ne

is chosen which permits the assumption of (5.2), the parameter conditional

independence in (5.7) follows automatically when the noise field is within

the particular class being considered hare.

A specialization of notation occurs in this Chapter. Tinc is used to
denote explicitly the incremental observation period length while T is

reserved to denote the total observation period length.
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Chapter VI

THREE SPECIFIC PROBLEMS AND THEIR CONDITIONAL LIKELIHOOD RATIOS

The focus of this chapter will be on the derivation of the likelihood
ratio processors for three specific problems. In each, directional uncer-
tainty arises in either the location of a signal or noise source. Our
observables will consist of the collection of Fourier coefficients z repre-
senting the bandlimited time waveforms observed at all of the array elements.
The primary goal here is to derive the single frequency parameter conditional

joint density expressions under H., and HO. These are the fundamental

1
components required by all four of the optimal array processor structures
discussed thus far. Also considered are the essential features of the
sequential/conjugate blocks indicated in Figure 5.2 which evolve out of

the mathematics of each problem. Lastly, the incorporation of a conjugate

prior into each block and the integral which results is discussed.

Uncertain Direction: General Formulation

The problems considered in this chapter involve either signal or noise
location uncertainty. As mentioned in Chapter II, likelihood ratio expres-
sions for such problems were originally pursued by Adams (Adams, 1973). An
array of K uniformly spaced elements on a straight line is assumed with the
zeroth element being the right-most sensor. The processor will be asked to
decide between the two mutually exclusive and exhzustive hypotheses Hl that
the time waveforms observed at the elements consist of signal plus noise

and HO that they consist of noise alone.
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When noise alone is observed, the array element outputs are sample

functions of zero mean, stationary Gaussian random processes. One component
of the noise process is assumed to be spatially uncorrelated (i.e., indepen-
dent from sensor to sensor). The power spectral density function of this
component N(w) is assumed to be the same at each element. The second
component of the noise process is due to a directional Gaussian noise source
in the far field of the array. The power spectral density function of this
spatially correlated component is denoted D(w). Both components are assumed
bandlimited. Utilizing the notation of Chapter III and choosing an obser-

vation period sufficiently long for the expression in Table 4.1 C to be as-

sumed valid

N
= 1 * -1
Pl = Joge, I, Koty Bl=®) Qlomy) "z elugr, dug,
=0""’'n
(6.1)
h (n,t )t = ¥ byy” (6.2)
where Qln,t ) = =N 71 - oS .
N = N(nwo) and D = D(nwo)
# . .
zﬂn,rn) = [1, exp(]nworn),..., exp(J(K—l)nworn)] (6.3)
and Wy = %g-, T tre observation period length.

Uncertainty in location is reflected in the parameter T which is the time
delay of the directional noise between adjacent elements. Our a priori
knowledge on this parameter is summarized by the prcbability density function
p(wotn). Since the covariance matrix is of the special form

Qy(n,t ) = NI +D _Y__g* (6.4)
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where I is the K-dimensional identity matrix and gﬂn,rn) is the "pointing
vector" in the direction of the noise, its inverse in (6.2) is given by
Bartlett (Bartlett, 1951). A detailed discussion of this result is given

in Appendix E.

The signal consists of a 3aussian random process with a known time

varying mean. When signal plus noise is observed, the array element outputs

consist of time delayed versions of this signal process added to the noise
processes described above. The random component of the bandlimited signal
process has a power spectral density function denoted by S(w) and the
deterministic component is represented by the Fourier coefficients bo(n)
at the zeroth array element. Again, utilizing the notation of Chapter III
and choosing an observation period sufficiently long for the expression in

Table 4.1 C to be assumed valid

N
- 1
p(g]Hl) - jn T Iw T TT e
s 0nn=0 = Igi(n’Ts’Tn)l

“0

. exp[-(gﬂn)—bo(n)gfn,rs))*Ql(n,TS;n)-l(gﬂn)—bo(n)gﬂn,rs)]}

. p(mors,w tn)dm rndm T (6.5)

0 0 0's

% s

~ -1 - -1 D(N+K-S)W:"+S(N+K.D)uu“_2.D.S Re{ :'_Yv*_l
wher2 Ql(n,'rs,rn) =N "1 - N[(N"‘K’D)(N'{-K_L-S)-D'S uwv?sﬂ%_— (5.6)

— ————

N = N(nwo), D D(nwo), and S = S(nuo)

X(H,Tn)“ = [1, exp(jnworn),...,exp(j(K-l)nworn)]

*
q(n,rs) = [1, exp(jnmors),...,exp(j(K-l)anTs)] (6.7)

and W, =

0

2 . .
7$-, T the observation period length.

60

et TR e

[ Sgaanit]
« "




61

Uncertainty in the sigr > location is reflected in the parameter Ty which

Eé is the time delay of the signal between adjacent elements. Under this
- hypothesis, the covariance matrix is of the form
i
( )=NI+Dvv +Suu’ (6.8)

- 9_1 Byt T =N 2 yy uu .

¢

&

whose inverse in (6.6) alsc is discur jed in Appendix E.

§; The likelihood ratio is by definition the ratio of (6.5) and (6.1) |
L ¥

A p(gIHl)

L Mz) = comy AENE (6.9)

{j Thres Problems
- The preceding section provided the general formulation of the array
{.
- processor when there is location uncertainty. Note how the integrands in |
f (6.5) and (6.1) separate into their single frequency constituents. These
single frequency conditional densities will be derived for three specific
|
5~ problems
. (1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD), ;
t !
L. (2) Signal Known Except for Direction in Noise with an Additive ‘
i Directional Noise Component of Known Direction (SKED in NKD), ’
{. :
(3) Signal Known Exactly in Noise with an Additive Directional !
¢ . !
; Noise Component of Uncertain Direction (SKE in NUD).
j GUD
) Under Ho
|
L p(z(n)H)) = 72— expl-z(n)q,(m7z(m)]  (6.10)
( " lgo\n)l
L,
' where Qo(n) =NI (6.11)
L.
= |
N N(nwo) .

f
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|Q,(m)| = NK (6.12)
Qo(n)-l S (6.13)
1

- PR RPN
p(gﬁn)lwots,ﬂl) = exp[-z(a)'Q,(n) "z(n)]  (6.14)

K '
w |Qi(n,18)|
where 91(“’Ts) =NI+S Ejih (6.15)

N = N(nwo) end S = S(nmo)

g(n,rs)* = [1,.., exp(jnwors),..., exp(j(K-l)nwors)]

|91‘“’Ts)| = L (k-s4m) (6.16)
-1 1 _Suu¥ ,
and Ql(n,Ts) =N - N(E#K-8) (6.17)

Since the uncertain parameter exists only under H. , the single frequency

l,

conditional likelihood ratio is of interest

plz(n)|wjT.H)
A(g(n)lwors) = P(i(n)lﬂo)

(-2

12,(m)] ) .
= TEQTHTT expl-z(n)"(Q, (n,7,) l-g_o(n) ")z{n)1. (6.18)
=1

Making the appropriate substitutions from (6.10)-(6.17) into (5.18)

K-1

A(gﬂn)lons) = K-p+N SX*PLN(I+K-S) ig

z.(n)nz;(n)}
o 1 3

K-1
. S .
expfﬁfﬁ;E7§7 2 (25‘ Azcos(lnwors+nz)}] (6.19)
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A, cos B, = RelC,]
* v g (6.20)
A, sin Bz = Im[Cz]
AK-1-% .
and Cy = .X z;(n) 2z, ,(n) . (6.21)
1=0
The essential features of the prccessor structure for this problem are
illustrated in Figure 6.1.
SKED in NKD
Under HO
- X * -1
plz(n)|H ) = — expl[-z(r) Q(n) “z(n)] (6.22)
7 [Q(n)]
*
wheve : Qr) =NIL+Dyvy (6.2
N = N(nwo) and D = D(nwo)
% . .
v(n)" = [1, exp(]nu.‘orn)9 cees exp(J(K-l)nmorn)]
1 1 D vxr*
and Q) T = NI - N(N+K-D) * (6.2u4)
Urder Hl
plz(m)ug_,H ) = —2— expl-(z(n)-b_(ndu(n,t_)) Q(n) (z(n)-b (n)u(n,t ))]
0s’1 K =~ 0= s’ = = 0= s
n Igfn)l
(6.25)
where gﬁn,rs)* = [1, cxp(jnworp). cees exp(j(K-l)nwors)] .

Since the uncertain parameter exists only under H., the single frequency

1

conditional likelihood ratio is of interest
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&4

p(gﬂn)lmots,ﬂl)
p(gﬂn)lﬂd)

ne>

Az(n) [w,T )

oA o

]

R,
[

expl2 Re{z(1.)*Q(n} b (m)u(n, )} - |b (n) | 2u(n,x J'otn utn,e )1

A TR ey
WhodAma
v

(6.26)
;' Making the appropriate substitutions from (6.22)-(6.25) int~ (6.26)
I Xw
: _ KIN+(K-1)D] . 2
g- A(g(n)lmors) = expl- NONEKD Ino(n)l
&
+ 2 Reliz ()b, (n) -yl Kilz ()™ (n)exp(-jine_t )}
.- NZ0°7" 2™ " NOwKeDY (L Zi'") Potnlexp(-JinugT,
{' K—l
) « expl2 ] Ay cos(znmors + Byl (6.27)
2 =1
. where Az cos Bz = Re[Gz] - Re[HzJ + Re[Izl
g (6.28)
.
; A, sin B, =—Im[G£] + Im[Hu] - Im[Iz]
l' 41 * )
and G, = E-zz(n) bo(n, (6.29)
A D Kol *
Hy =g R izo zi(n) b,(n) exp(—](l—z)nmoTn) (6.30)
i
B r, & D Ib (n)l2 (K-2) exp(jnw t ) . {6.32)
£ =~ N(N+K-D) 0 On T

The essential features of the processor structure for this problem ar

illustrated in Figure 6.2.

SKE in NUD
Under HG
. L -
plz(n)|w t_,H ) = —t expl-z{n) Q(n.1 ) lz(n)]
-~ O0n’ G X - - n. -
; T ‘gﬁn,rn)l

. (6.32)
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f
* *
f where Qn,t ) =NI+DVyY (6.33)
= N(nw,) and D = D(nwg)
gKn,Tn)* = [1, exp(jnworn), cees exp(j(K—l)nworn)]
latn, )] = N (K D)
D vv*
-1 _ -1 Dbyv
and Qe ) 7 = N L - gDy (6.34)
Under Hl
p(z(n) Ju 1 JH)) = —g—— expl - (z(n)-by(n)u(m)) *Qn, 7Y (z(n)-b (adu(m)]
" Ll lQﬂn,Tn)i !
= —E——lL——--exp[-gﬂn)*gﬂn,rn)-lgﬁn)+2Re{gKn)*gﬂn,Tn)—ibo(n)gﬂn)}
m Ig(n,rn)
- Ipy(m) [Pu(n) Qtn, 7 ) Hu(m)] (6.35)
x _ - . ey
wher o u(n)” = (1, exp(]nwors), ceoy exp(j(K l)nwors)J .

Since the uncertain parameter exists under both hypotheses, the conditional
joint densities must be retained individually. Making the appropriate

substitution: from (6.32)-(6.35) into (6.32) and (6.35)

p(gﬂn)|wotn,H0) =

[N+(K- l)D]
S J(K D+N) xpl- N(N+K*D) Z z, ()" z,(n)] exPLN(N+K D)2Z A bos(znu T *B )]
(5.36)
and
- + e s l - - - SRR n ~ 3 ““‘_.‘U&“'A < 3 -
i B S TR e, i A il S A - M
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[+(K-1)DT"
p(z(n)|w t ,H ) = L expl- - Z z,(n) "z, (n)
0>y’ T TRET o N(N+K+D) |
+2 Re {l‘{%}gﬁz z,(0)*b (n)exp(~jinu z )} - LHEHELIDL 1y (1))
D KL g 1
. exP[ﬁTﬁ:frﬁT 2 zgl Ay cos(knmorn + Bz)] (6.37)
0 0
where A, cos B, = Re[C,]
. ' % (6.38)
o . 0 _
A sin Bz = Irrcz]
1 1
A7 cos B, = Re[C,] - Re[D,] - Re[E,] + Re[F ]
L L 2 L L L (6.39)
Ai gin Bi = Im[Cll - Im[Dz] + Im[Ez] + Im[le
A K-1-2
and C, = ) z; (n) z;,o(0) (6.40)
i=0
K-1-%
D, = izo zi(n) bo(n)exp(—j(i+2)nwors) (6.41)
A K-1
E, = 1 z. 1 * o(mexp(-3(i-2)nw,T.) (6.42)
i=p
F, 8 1b (0)]? (K-2)exp(~jtnw 7 ) (6.43)
2 1P Pi=Jinugts/ - )

The essential features of processor structure for this problem are illus-
trated in Figure 6.3. The energy measuring terms in (6.36) and (6.37) are
not included since they will cancel in the formation of the likelihood
ratio.

The results of this section are summarized in Table 6.1.
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Conjugate Priors

The single frequency parameter conditional expressions summarized in
Table 6.1 can be used directly in calculating the likelihood ratio by simply
substituting them in (6.5) and (6.1) with A(z) given by the ratio in (6.9).
The expressions in Table 6.1 also are the fundamental components required
by the general array processor structure implied by (5.12) and illustrated
in Figure 5.2. Each sequential/conjugate block is an independent time
sequential processor for a single frequency using its own natural conjugate
prior. Conjugate priors are used since they are reproducing and thus lend
a certain amount of mathematical tractability to the problem.

Recalling from Chapter II, the existence of a sufficient statistic
for € implies the existence of a natural conjugate class of probability
density functions under p(gﬁn)lg). From Theorem 2.1, §(z2(n)) is sufficient
for 8 if there exists

(1) a function g[8(z(n)),8] which depends on the observation only

through §(¢), and

(2) a function G(z(n)) which does not depend on 8, such that
p(z(n)]8) = gl8(z(n)),8] 6(z(n)) . (6.44)

The parameter conditional expressions in Table 6.1 suggest the following
general form of §

T
8 = [A)sB 5. 58 5B ]

- sAy <A

(6.45)

[ A0 K-l’BK-l

and of g[.ﬁ_,g]

K-1
g[8, = explC }

A2 cos(Lnw
=1

of + Bz)J (6.1.
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where C is a constant and t represents T, 0P T depending on the particular

problem being considered. We see from Theorem 2.2 that (6.46) also defines

ks
1
b
q
-
4
A

a reproducing class of densities under p(z(n)|8). Thus, conjugate priors

for these problems have th¢ form

K-1
expl [} Uy cos(2nugt+Vy )]
p'(wor) = =1 —_ (6.47) :
/ (numerator) dw T
w. T 0
0
where Ug 20, |V,| < m, and v again represents T P T .

Each sequential/conjugate block in Figure 5.2 forms a single frequency
marginal density based on its particular conjugate prior. The integral
required to average over p'(wOT) has a form similar to that in the denomi-

nator of (6.47). 1In general, this integral cannot be completed in closed

form and some numerical ie.hnique must be used for its solution. Note the

folloving special case

ki
= f,, explA cos(wyT +B)JduyT = I (A) (6.43)

where A > 0, |B| < n, and IO(°) is tF- modified Bessel function of order zero.
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Single Frequency Parameter Conditional Expressions [
I
A. Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD) ‘
i |
A(g_(n)lwors) K°D+N exP[N(NH(' y . Z z; (n)* z;(n)] oL

K-1 2

- S
. expl_ﬁ?m-)— 2{221 Azcos(anors+B£)}]

where Az cos Bz = Re[CR']
Az sin Bz = Im[CL]
K-1-%
4 *
and ¢, * i-z-o z,(n)'z, () .

B. Signal Known E-—cept for Direction in Noise with an Additive Directional

Noise Component of Known Direction (SKED in NKD)

(- K[N+(k-1)D]
SXPL™ TR(N+K-D)

Mz(n) |ugry) |by(n)?

+

1 * D ko1 * .
2 Re{-N-zo(n) bo(n)-migozi(n) bo(n)exp(-jmwotn)}]

K-1
exp[ 2 ] A, cos(fnw,T_ + B,)]
=1

where A, cos B, = Re[GL] - Re[Hz] + Re[IE]

Az sin Bl=—Im[G£] + Im[H£] - Im[I£]

and GQ

. zl(n)*bo(n)

2

K-1
) D * <o
Hy = NOwKD) igo z;(n) by(n) exp(-3(i-Linu,t,)

Table 6.1
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A D 2 . .
I!' = m Ibo(n)l (K-2) exp(]lnwo‘rn) .

C.

Signal Xnown Exactly in Noise with an Additive Directional Noise

Component of Uncertain Direction (SKE in NUD)

4 )D] .
.. p(z(n)|w 1t ,H ) = 1 exp[- i+ (K- % Z (n)]
0'n>0” 7 KK-T s N(N+K-D) ,

D K-1
e °exp[m2z A cos(!.nwtn+8)]

and

[N+(K-~ 1)DJ

K 1 exp[wl z(n)z(n)
oLk pan) *

p(gﬁn)lworn,ﬂl) =

+ 2Re{§%§§i%l% X 2, (n) b (n)exp( jlnw Ty )}

K-1
KIN+(X-1)D] 2 D 1 1
S NONKTDS Ibo(n)l J- exp(ﬂn——-—"_}(.n) 22{1A£cos(2nmorn+82)]

where A

cos B Re[Czl

A

"

sin B

O =O
0 o

Im[Czl

2]
-
1

1
Az cos By = Re[cz] - Re[Dz] - Re[Ez] + Re[Fl]

1 1
Az cos Bl Im[Cz] - Im[)l] + Im[Ez] + Im[Fz]

A 1
«nd C, = ) z; (n) z, .(n)

itk
K-1-% % .
b, ¢ Z z.(n) b (n) exp(-j(i+%)nw 1 _)
L .2 i 0 pl-] 0's
1=0
K-1 *
Ey igz 2;(n) by(n) exp(-3(i-)nwyr,)

ne>

3 Fy 8 lbo(n)IQ(K-l) exp(-jlnons) .

Table 6.1 (continued)
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Chapter VII

GENERALIZED PERFORMANCE

The performance of a Bayes optimal processor is summarized by its ROC
curve. In the general case where uncertain parameters exist under each
hypothesis, knowledge about them is explicitly noted at the outset by an

a priori probability density function conditonal to H, and one conditional

1

to Ho. The processor's performance then becomes a function of their
detailed shape. Often, the functional form of these densities is chosen
so that various levels of uncertainty are easily modeled and a family of
ROC's is reported. The question then arises: What performance would have
been achieved under different prior knowledge assumptions (particularly
when outside the class of densities modeled)? Or, more deeply: Does some
algorithm exist which will operate on a known ROC for a given pair of priors
to yield the ROC for a new set of priors? And, if not: Does a canonical
intermediate step exist between observation and likelihood ratio statistics
which always may be used as a starting point for the calculation of an ROC
based on an arbitrary pair of priors? The purpose of this chapter is to
pursue these questions. The discussion will use as a basis the fundamental

concepts of sufficient statistics and reproducing densities introduced in

Chapter 1I.

The ROC and Observation Statictics
In the evaluation of performance, both a decision rule (i.e., likeli-

hood retio plus threshold) and vb .svation statistics are needed. (onsider
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the general case where uncertain parameters exist under each hypothesis.
The decision rule is written
D
]e p(g'gl ’Hl)p(.e.l) dgl 1
A(R) = (7.1)

oAV
-3

0
9 p(gjgo,ﬂo)p(go) de,

where R is a vector of observationms, p(Qi) and p(go) are a priori probabil-
ity density functions of the uncertain parameter vectors _G_lé el and
goéleo, and n is the decision threshold. The likelihood ratio can be
viewed simply as a transformation of random variables from the observation
space (typically of large dimension) to the one dimensiocnal decision space
{0,»2). It is the conditional distribution of A under Hl and HO from which
the ROC is calculated (see (2.20) and £{2.21)). Peterson, Birdsall, and

Fox (Peterson, Birdsall, and Fox, 1954) have shown

p(AlHL) = A p(AlHo) . (7.2)

Thus, only the density of A conditional to Ho need actually be obtained.

Owing 10 the large dimensionality reduction between observation and
decision spaces. the question arises as to what "information" is lost in
the mapping. ¢ ippose we are given an ROC and the general equation for
A(R) as in (7.1) for which it summarizes performance. Now, consider a new
pair of priors p'(gi) and p'(go). Will the ROC under p(gi) and p(go)
provide us with sufficient information to calculate the ROC under the new
prior knowledge? Birdsall has proven two propositions which relave to
this question (Birdsall, 1973)

(1) An ROC curve contains insufficient information to specify

the observation statistics that led to it, or even to specify

the statistics on a real decision axis that led to it.

o ae ot W
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(2) An KOC does contain sufficient information to specify the
statistics on the logarithm of the likelihood ratio.

The second proposition guarantees that we can obtain the densities
p(lnAIHl) and p(lnA]Ho) from just the information present on the ROC
curve. The first states that these densities are insufficient to specify
the observation statistics leading to them. A simple example will illus-
trate this last point.

Consider the detection of a signai known exantly ir white Gaussian
noise. Recall from Chapter II that performance for this problem is com-

pletely characterized by the detectability index

ac = = (2.22)

whera E is thie received signal energy and NO/2 is the noise power spec-
trum height. Clearly the observation statistics p(§JHl) and p(BJHO) will
depend on the exact shape of the signal and height of the noise power
spectrum. Note that the value of d2 depends only on the ratio of signal
energy to spectrum height. Thus, many observation situations can yield
the same ROC curve. Correspondingly, the information lost in the dimen-
sionality reduction from observation space to decision space is the
detailed nature of the observation statistics.

Sirce the ROC is insufficient to specify the observation statistics
leading to it, the conditional statistics required in (7.1) prove to bt
an impossibie refinement. Thus, simply being given an ROC and the under-
lying priors p(ﬂl) and p(Qo) will not provide encugh information to

calculate performance under a new pair of priors p'(gi) and p'(go).
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The Role of Sufficient Statistics

Admittedly, attempting to calculate performance under a new pair of
priors with only the original priors and their ROC curve as a basis is an
ambitious goal. But it does lead one through the visualization of A(R)
as a transformation of random variables and, more importantly, that the
direct mapping from observation space to decision space under A(R) is
"lossy."

Consider a new situation. Suppose the performance of a particular
detection receiver is desired and assume there are uncertain parameters
under each hypothesis. In this case, the conditional statisties in (7.1)
will be available explicitly (i.e., their functional form). Once again,
view A(R) as a transformation of random variables. To compute performance
for a particular pair of priors p(gi) and p(go), the transformation through
A is completed to yield p(AlHl) and p(AIHO) from which the ROC can be
determined. Now, if the performance for an entirely different pair of
priors p'(gi) and p'(Qo) is desired, the transformation must begin again
with the observation statistics and proceed as outlined above. The ques-
tion arises: Is there some well defined intermediate step between the
observation statistics and those of A which we might use as a basis (i.e.,
a new 'observation space" of lower dimensionality than ®) for the computa-
tion of performance for any pair of priors?

The remainder of the discussion will ass.me that p(R| Q_l,Hl) and p'(R| LN
admit sufficient statistics of finite dimension fou 8, and 90, respectively.

1

The expression in (7.1) becomes

G (R)fy &,[8,(R),0,1p(8,) a0, D
1="e, \1m1°="=1 1 lzn (7.3)
D

Go(-R—)jeo gol8,(R),8,7 p(8,) a8, P

AR) =
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where §,(R) and §,(R) are the finite dimensional sufficient statistics as
in (2.12). It appears from (7.3) that a plausible intermediate step would b
be the space formed by the random variables G, (R)/G,(R), 8,(R), and §,(R).
This step occurs just prior to the averaging over p(gi) and p(QO) and is
illustrated in Figure 7.1. Recall that only the transforuation conditional
to Ho need be carried through due to the formula in (7.2). Two observa-
tions can be made
(1) Uncertain parameters under H1 only.
In this special case of the general problem, the observation
statistics conditional to Ho stay the same wher new prior
knowledge is assumed. Thus, the proposed intermediate
step is a valid point from which calculations of perfor-
ance for any prior knowledge can be started.
(2) Uncertain parameters under Hl and HO'
Since the observation statistics under HO essentially have
p(go) embedded in them, the vroposed intermediate step will

be valuable only when p(8,) remains fixed and p(8,) alone

is allowed to change.

An Example: SKEP

As a specific illustration of the natural intermediate step discussed
in the previous section, consider the problem of detecting a signal known
except for phase (SKEP) in additive white Gaussian noise bandlimited to
W Hz. (Roberts, 1965). Since there is a single uncertain parameter and
it exists under the Hl hypothesis only, the likelihood ratio can be

written as
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D 13
2 . ”
A(R) = expl-d /2]]o expli(x(R)cos¢ + y(R)sing)Ip(¢)dé Z n (7.4)
DO !
c'l
3 where d2 = 2
N
0
26T 2WT
! 2 _ 1 a2
E =37 .Z s (t;) = 5 .§ [m(t;)cos(ut,~¢)] ‘
=1 i=1 i
No/2 = height of the noise power spectrum
| 2WT '
x(R) = ) R(ti)m(ti)cos wt,
WV?BNO i=1
M .
and y(R) = ) R(ti)m(ti)sin wt, . ;
WVZENO i=1 :
In the notation of sufficient statistics, (7.4) becomes
Dl
AR = [ gl8(R),6Tp(4)d 3 (7.5)
| %o
f where glé(R),¢] = expl-d2/2 + (8, (R)cos¢ + 8. (R)sing)] o
§ and 8§(R) = [8..(R),6,  (R)I' = [x(R),y(R)I R
; == 01'272%02' % 2yt d . :
Conditional to Hyo x(R) and y(R) are independent Gaussian random variables
with zero mean and unit variance. Thus, the cdesired intermadiate density
‘ as indicated in Figure 7.2 is
p(8[H)) = p(x(R),y(R)[H})
= N(0,1) - N(0,1) (7.6)
where N(0,1) denotes a Gaussian density with zero mean and unit variance.
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We may now view p(Q]HO) as new "observation statistics' and performance for
any prior p(¢) can be obtained by completing the indicated transformation
of random variables. Note that a significant dimensionality reduction has
taken place without loosing the ability to compute performance for an
arbitrary prior.

When a priori knowledge is chosen from the class of densities

exp[A; cos (By-¢)]
p(¢) = 2n IO(AO) !

0<¢c<2n (7.7)

=0 , otherwise
Roberts has chown that the likelihood ratio becomes (Roberts, 1965)

exp[-d°/2] 1,(A))

(7.8)
oy

A=

2- e 2 oxr 3 2
where Ay = [dx(R) + Ay cos By 1" + [d-y(R) + A, sin B)]"

The processor block diagram is shown in Figure 7.3. Note that the sufficient
statistic §/R) = [x(g),y(g)]T is calculated jusi prior to the incorporation

of the a priori knowledge.

Parformance: Optimal and Suboptimal

The observations at the end of the second section pointed out the
usefulness of the joint density p(Gl/G0,§1,§O|HU) as an intermediate step
in the calculation of performance for an arbitrary prior. In general,
this step will enable us to calculate optimal performance only when p(gi)
is allowed to be arbitrary.

The intermediate step potentially may be beneficial in a different
sense when both p(gi) and p(go) are allowed to be arbitrary. Although

optimal performance cannot be obtained, the processor's sensitivity to
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an accurate incorporation of a priori knowledge can be studied., In this

v g
G
T

case, the intermediate density conditional to both Ho and Hl will be needed

- —

.
oz

since the secondery processor they feed is no longer optimal (i.e., the

AL IS

observation statistics do not have embedded in them the priors utilized

in the processor). One such problem of potential interest would be where

vt

the single uncertain parameter of noise power spectrum height exists under

§
Hl and HO.

i ) et
LR N e )

i}

e

A major benefit of a natural intermediate step between observation space

&2
S

and the likelihood ratic is found in performance calculation via computer

.

simulation. When only the prior knowledge under Hl
2 mediate step shown in Figure 7.1 is a valid point from which performance

is erbitrary, the inter-

pro——

SR K R SR R

; calculations can begin. As in the SKEP problem, this step can represent !

’fvx o
3

a significant reduction in dimensionality from that of the observation space.

Ml TqT
Pt

The procedure would be to generate observation vectors R conditional to Ho.

RS

For each R, the values of Gl/Go’ Ei’ and §0 would be calculated and

retained (in effect, generating a discrete version of p(Gl/Go’—i’EOIHO))’

Then, for every p(gi) of interest, the new "observation vectors" consisting (

e R

of (Gl/Go,ﬁl,ﬁo) would be used as input to the secondary pr.icessor shown

in Figure 7.1. The resulting collection of A's would be used to form an t

N iy 41
PRTARSAS THF

E approximation to p(A[HO) and performance calculated.
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Chapter VIII

THREE SPECIFIC PROBLEMS AND THEIR PERFORMANCE

Detection performance in terms of the receiver operating characteristic
(ROC) curve for the following three specific problems now will be discussed

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD)

- 0 o s = 3 e 00
-
»

g ’ (2) Signal Known Except for Direction in Noise with an Additive

capal 3y

Directional Noise Component of Known Direction (SKED in NKD)
(3) Signal ¥nown Exactly in MNoise with an Additive Directional

! Noise Comnonent of Uncertain Direction (SKE in NUD).

CadiGAR et

Their parameter condi%ional joint density expressions were derived in

Chapter VI and summarized in Table 6.1. To evaluate performance, the

N
-

three optimal array processors were implemented on the computer. Fr n

AN

Monte Carlo simulations of each processor, the distribution of A(z) under

BRI

! HO was obtained. This distributinis then was used to calculate the detec-

tion and false alarm probabilities which are summarized on the ROC curve.

Several important concepts in the calculation of performance for likelihood

E2 IV ENa fdtnt gt

it

ratio processors via computer simmulation are discussed in Appendix F.

LIS

7 ’ Prior Knowledge
k In each of the three problems, uncertainty arises in the location of a

signal or noise source. The array processor sees location uncertainty

reflected in terms of an uncertain time delay of the directional source

between adjacent elements. And, in turn, this corresponds to an uncertain

i dh

ﬁf
|
4
i
!

phase delay in the frequency domain where the processing is actually carried

B N O U U ot e bt L Ny ?LA-U-MM
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| naumand ]

out. Thus, a priori knowledge on location will be summarized by the prob-

ability density function p(wor) where 1 represents either Tg or T, Such

Fore—

knowledge is explicitly incorporated into the likelihood ratio processor
through the averaging in (6.1) and (6.5). ‘

The density p(wor) was chosen from the natural conjugate class of

probability density functions for this group of three problems whose form
is that of several terms as in (6.47) multiplied together (one for each

frequency index). Specifically

- N -7 m
p(wor) = 5;—T;TK;7 exp[Ao cos(Nmot+Bo)] s S Wt Sy
(8.1) i

=0 s Otherwise !

where AO >0, -7 < B0 < w®, and Io(°) is the modified Bessel function of order I
zero. For all cases where performance is reported here, N = 8 and Bo = 0.
As Figure 8.1 indicates, varying the parameter Ao from zero to infinity .
models a wide range of uncertainty from diffuse to very precise prior i
knowledge. The array elements are assumed one half wavelength apart at
frequency Nw0/2n Hz. Thus, (8.1) corresponds to a location uncertainty {'
over *90° in physical angle from broadside to the array or *7 in phase

!
at frequency Nwo/2n Hz. The parameters AO and BO should not be confused ls

with similarly denoted parameters ir Table 6.1.

Performance

The remainder of this chapter will be devoted to the discussion and
comparison of performance results for the three problems enumerated earlier. (
Each ROC is labeled by the Ao value corresponding to a particular level of

uncertainty. The array sizes investigated were for three and nine elements

as denoted by the parameter K. Both the Gaussian noise which is independent

2. > s o Y - e -
I e o S B o e I T e O B il R 2 B T L LI e
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from sensor to sensor and the additive directional Gaussian noise have power
spectra which are white and bandlimited to Nm0/2n Hz. Their spectral heights

are denoted by N and D, respectively.

GUD

Performance curves for the processor which is to decide between presence
or absence of a Gaussian signal of uncertain direction in Gaussian noise
which is independent from sensor to sensor are given in Figures 8.2-8.6.
The five figures are for a wide band signal source whose power spectrum is
white and bandlimited to Nw0/2n Hz. Its spectral height is denoted by S.

The likelihood ratio for this problem is given by

N
Az) = fw T 1T A(gﬂn)lmors)p(wors)dwors (8.2)

0 s n=0

where A(g(nxnors) can be found in Table 6.1 A.

Note from Figures 8.2-8.4 that increasing location uncertainty leads to
a greater degradation in performance the larger the array size. The e <ted
value of the total signal energy processed in Figures 8.2 and 8.3 has been
kept constant to make this comparison more + “sible.

Figures 8.5 and 8.6 evaluate performance for a particular suboptimal
processor which has been placed in the same environment of uncertainty as
discussed above. This suboptimal processor has the estimate and plug struc-
ture as illustrated in Figure 3.4. Since the uncertain parameter of signal
source location exists under Hl only, é

-1

this case, the estimate is not data dependent and is fixed at él = (mé&s)= 0.

is the sole estimate required. In

The parameter conditional expression into which éi is plugged is given by

N
Az]8,) -']I;[(')A(g(n)lwors) (8.3}

}

[ LTS
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where A(gﬁn)lwors) can be found in Table 6.1 A. The resulting processor is
a realizatiox of that derived by Bryn (Bryn, 19562) with a front end consist-
ing of a beamformer looking broadside to the array. Note that even in a

relatively w certain envi»onment, the suboptimal tire¢ slement array

processor lous nut suff-r greatly in performance loss. However, the sub-

ootimal nine e.. '»n* wpay processor suffers a significant drop in perfor-

mwnce for ail ievels of uncertainty less than precise knowledge, These two
figures alsc . :1d be compared to Figures 8.2 and 8.4. Particularly for
‘e nine slemeut array, thesc results point out the necessity of rroperly

incorporac‘ng « priori knowledge into the array processor design.

S:TD in WKD

Performance cucves are given in Figures 8.7-8.18 for the processor which
is to decide presence or absence of a signal known except Tor direction in
Gauselan »yise _ouriscing of a component which is independent from sensor to

sensor and an additive component arising from a source of known direction.

The likelihoed ratio for this problem is given by

N .
A(z) = f“oTS;LE A(gjn)lwors)p(wors) du,T (8.4)

where A(Eﬂn)imors) can be found in Table 6.1 B. A single frequency signal
is assumed at Nw0/2n Hz. Its energy over the observation interval is given
By E = 2 bO(N)*bO(N). The first five figures are for a noise component of
known direction of zero spectral height. This reduces the problem to the
known signal counterpart of the GUD problem previcusly discussed. Perfor-
mance for this special case of the optimal processor originally was reported

by Gallop (Gallop, 1971; Gallop and Nolte, 197%). Those results are not

identical to that reported here since Gallop assumed the zeroth array element

= k] &, d'
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was located at the array center instead of the array end as is assumed here.
The remaining seven figures are for a noise component of known direction of
unit spectral height.

Note from Figures 8.7-8.9 that increasing location uncertainty leads to
a greater degradation in performance the larger the array size. This is
particularly evident in Figures 8.7 and 8.8 where the total signal energy
processed has been held constant.

Figures 8.10 and 8.11 evaluate performance for a particular suboptimal
processor which has been placed in the same environment cf uncertainty as
discussed above. This suboptimal processor has the estimate and plug
structure as illustrated in Figure 3.4. Since the uncertain parameter of
signal source location exists under Hl on’v, §1 is the sole estimate
required. 1In this case, the estimate is not data dependent and is fixed
at 8, = (w&ts) = 0. The parameter conditional expression into which é

1 1
is plugged is given by

N
Mzley) = TT Mzm) fagry) (8.5)

where A(gﬂn)hbrs) can be found in Table 6.1 B. The resulting processor is
a realization of that derived by Mermoz (Mermoz, 1964; Horton, 1969) with ‘
a front end consisting of a beoamformer looking broadside to the array. For
both the three and nine element processors, significant performance degra-
dation is suffered for all levels of uncertainty other than precise

knowledge. This is particularly evident the larger the array. Once again,

.

a comparison of these results with those in Figures 8.7 and 8.9 point out

the necessity of properly incorporating a priori knowledge into the array

SRR

processor design.

4 SRS
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An interesting comparison can be made between the optimal performance
just discussed and that for the similar GUD problem reported in Figures
8.2-8.4. If performance degradation was due to spatial uncertainty only,
we would expect both problems to suffer a similar performance loss as the
level of uncertrainty increased. Note that the Gl) processor is clearly less
effected by location uncertainty than the SKED processor. Thus, spatial and
temporal uncertainty get mixed together. In effect, it appears that che
Gaussian signal has such a large amount of unc.vzainty aiready inherent
within it that the addition of location uncertainty <oes little to degrade
detection performance.

The remaining figures in this section are for a directional noise source
of unit spectral height. In Figures 8.12-8.16, its location is fixed such

that Nworn = %/2. Figures 8.12-8.14 correspond to Figures 8.7-8.9. Note

that the addition of a directional noise source causes additional perfor-
mance degradation for all levels of uncertainty. This effect is less
noticeable in the nine than the three element array processor.

Figures 8.15 and 8.16 evaluate performance for a particular suboptimal

processor which has been placed in the same environment cf uncertainty as

discussed above. This suboptimal processor has the estimate and plug struc-
ture as illustrated in Figure 3.4. Since the uncertain parameter of signal

source location exists under Hl only, 8. is the sole estimate required. In !

-1

this case, the estimate is not data dependent and is fixed at 91 =

(w&fs) = 0. The parameter conditional expression into which §_ is plugged

1
is given by

N
A(g_lgl) =1;];T(') A(g_(n)]w&’s) (8.6)
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Figure 8.15.

Performance of the Suboptimal SKED in Array Processor.
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where A(z(n)ly,7,) can be found in Table 6.1 B. The resulting processor is

§§ a realization of that derived by Mermoz (Mermoz, 1964; Hocton, 1969) with a

'

front end consisting of a beamformer looking broadside to the array and a

Wy

nullformer pointing towards the directional noise source's location. Note

that little difference is noticed between these results and those reported

am——

in Figures 8.10 and 8.11. The addition of a noise source of known location

} has a small performance degradation effect in comparison to the large loss

- introduced by signal source location uncertainty.

;é The remaining two figures illustrate the effect of varying the location
7 of the directional noise source for the optimal three element array processor.

Figures 8.17, 8.12, and 8.18 correspond to noise source locations such that
Nwotn = 3w/4, ©/2, and n/4, respectively. In this sequence, the noise

source's location is progressively approaching broadside to the array which

# also is the mean value of the a priori distribution on signal source loca-~
: tion. Note that the Ao = 0 curve remains constant while all the remaining
curves move closer to it as the difference betwean the noise source's

location and the mean value of the signal source's leocation becomes smaller.

Fermova PURIEEY
fow-w

I' SKE iu NUD
Performance curves are given in Figures 8.19-8.23 for the processor

; which is to decide presence of absence of a signal known exactly in Gaussian

noise consisting of a component which is independent from sensor to sensor

and an additive component arising from a source of uncertain direction.

Thus, unlike the previous two sections, it is not the location of the

signal source wnich is uncertain. In addition, the resulting processor

g is more complex than the previous two since averaging over the prior

knowledge must take place in both the numerator and depnominator of the

v et Sl e
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5: likelihcod ratio «s shown below
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Figure 8.17. Performance of the Optimal SKED in NKD Array Processor.

.80

g‘w’* '
= b

Foaum




109
.80

]
7
3
0
0
J
«70

]
I
.50 .60

4

= 1.00
T
Ty

!
.40

.30

Q=

«20

= 1.00

= 4

e

.01

o AT A
-

090 P
.80 —

+99
.95
.05
.01

Ty ~

AT AR 28 g
2 oot sttt AT A I

EapRe Y AP VI paz L
Ao PR PR S 37 A0

e

AN

Performance of the Optimal SKED in NKD Array Process: r.

Figure 8.18.

POy .
AR

R T
TR AN DT o3y 8 LIV




e SR Lamyalvl i vl
I ——SAE S Sl o R oot NI D e,
D et iy h " -

orom o

LRty

110
§
g
N o)
fon ]j; p(gjn)Iworn,Hl)p(morn)dworn a
Mz) = —0 (8.7) =

Jo
0

T T p(g&n)lmotn,Ho)p(wotn)dworn
nn=0

fotamiond

where p(gﬂn)born,ﬂl) and p(gﬁn)born,ﬂo) can be found in Table 6.1 C. A

W@y

{

single frequency signal is assumed at NwO/Qﬂ Hz., Its energy over the obser-

PR N s 2 a0 b G L £ e

%
vation interval is given by E = 2 bo(N) bo(N). Note that the figures in

r»w-u-!

this section correspond directly to Figure 8.12-8,16 for the SKED in NKD

PRI

Pty
.

problem with the locations of the signal and noise source reversed (i.e.,

v o

i Nwor = 7/2). Thus, it will be possible to compare the relative
i 8

-y

. effects of signal versus noise source location uncertainty.

An interesting contrast with previous results is seen in Figures 8.19- |
8.21. Note that increasing location uncertainty does not lead tc a greater
degradation in performance the larger the array size. This is particularly
evident in Figures 8.19 and 8.20 where the total signal energy processed
has been held constant. An astual decrease in performance loss with
increasing array size is seen.

A second contrasv with previous results is seen in Figures 8.22 and
8.23. They evaluate performance for a particular suboptimal processor .

which has been placed in the same environment of uncertainty as discussed

above. This processor has the estimate and plug structure as illustrated
in Figure 3.4. Since the uncertain parameter of noise source location

exists under Hl and HO, both the §1 and éo estimates are required. In

this case, the estimates are not data dependent and are fixed at

éi = 8g = (v rn) = 0. The parameter conditional expression into which él

-~

and 90 are plugged 1is given by
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Az]e. ,0,) =222 (8.8)

e N
B i r;f;[;) p(z(ndhgt HHy)

N where p(g&n)lwotn,ﬂl) and p(gﬂn)lmorn,ﬂo) can be found in Table 6.1 C.
# Similar to the previous section, the resulting processor is a realization

| gC of that derived by Mermoz (Mermoz, 1964; Horton, 1969) with a front end

2 ’ consisting of both a beamformer and nullformer. The beamformer is looking
1 {{ towards the signal source's location and the nullformer i3 pointing broad-
7 side to the array. Note that while significant performance degradation is

|y t; suffered for all levels of uncertainty other than precise knowlrdge, the !

i- loss is nowhere near as severe as in Figures 8.15 and 8.16 where it is the

signal source's location which is uncertain.
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Performance Summary
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The results of this chapter facilitate an understanding of the effect

g

kT

of both signal and noise source location uncertainty on array processor

performance. Several obseprvations have been made and they arz summarized

e

below.
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. The detectabilities of a known form and Gaussian signal of uncertain
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location were compared. While both exhibited a degradarion in performance

oy
i

.

i as the level of uncertaiaty increased, it was noted that the optimal array

e
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processor for a CGaussian signal suffered significantly less in this respect
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than that for a known form signal.
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The remaining comparisons between optimal array processors were for
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problems involving both a known form directional signal source and a
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directional ncise source. A question thit anises immediately is wnich of
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uncertainty in the location of a noise source has a less serious effect on

#4 a——

performance degradation than a corresponding amount of uncertainty on the

location of a known form signal source.

o

Since performance results for two array sizes were investigated, the
} effect of increasing the array size while keeping the level of uncertainty
constant could be studied. Whin theve is signal source location uncertainty,
. increasing the array size leads to a degradation in performance. In con-
trast, when it is the noise source's location which is uncertain, increasing
the array size does not lead to a degradation in performance. In fact, a

slight increase was noted.

An appealing approach 1o array processor design when uncertain param-

eters exist is first to estimate these parameters, then plug them into the
parameters known likelihood ratio as if they were known exactly. The

performance cf a particular class of such suboptimal processors operating

in the same environment of uncertainty as their optimal counterparts was
investigated. For this class, tche estimates of signal and noise source
location were not data dependent and fixed at zero. The resulting
processors were realizations of those derived by Bryn (Bryn, 1962) and
Meruoz (Mermoz, 1984; Herton, 1969) each with a front end consisting of a

beamformer and (when appropriate) a nullformer. In all cases, the sub-

optimal processor suffered greater performance degradation for a given level
of uncertainiy other chan precise knowladge than its optimal countsrpart.
Especially as the array size grows lzrger, the results point out the neces-

sity of prcperly incorpearing a priori knowledge into array processor design.

2o . R N T . ' M»»V , - . . .
SN A ﬁxzﬁﬁxb&m%?iMAﬁﬂhﬂﬁﬁﬁﬁwAmwmﬁimm:4mmmvummmﬁﬁnumﬂmﬂﬁznﬁmﬂﬁﬁnﬂ&ﬂﬁﬂﬂﬂﬂhﬁk
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Chapter IX

ADAPTIVE LEARNING OF AN ADDITIVE DIRECTIONAL NOISE COMPONENT'S LOCATION

As mentioned at the end of Chapter III, an appealing approach to an
array detection problem where uncertain parameters exist is to estimate
these parameters and then plug them into the conditional likelihnod ratio
as if they were known exactly. When "good" estimators are used in the
structure illustrated in Figure 3.4, the processor is typically referred
to as being adaptive. Once again, however, it is not clear that piecing
together locally optimal techniques will yield global optimality when the
overall goal is good detection performance. The intent of this chapter is
to reiterate that when implemented sequentially, the optimal array processor
exhibits learning or adaptive features naturally. Specific cases of the

SKE in NUD processor will be used as illustrations.

Adaptive Optimal Array Processors

In the formation of the likelihood ratio, the marginal distribution of
the observables conditional to each hypothesis is needed. Assume the total
observation period has been broken into a sequence of incremental observa-
tion periods. Adopting the notation of Chapter V, our observables are now

the L vectors (gl,...,gL). Suspending the conditioning to Hl and HO
1 L, _ i i-1 1
p(z ...,z ) = [[ p(z |z ,.00,20). (S.1)
i=l

Assuminug parametey ¢ nditional independence of the E} (see Chapter V)
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_— i1
p(z 2™ 2h) = [ pG e 2t eptel 2t L2 hae
= fo ptzt|optelz* ™, .. 2hha0 (2.2)
where p(gj;}_L,...,g}) is an updated version of the a priori probability
density function of 8
. i-1 1
l_l J. e Z veor _&_ )
p(g..l_z_ ”"’_Z_ ) .'IL.-{p(llz 2 1’ . (9.3)
l ""’E )

The expressions (9.1), (9.2) and (9.3) are the sequential design equations
used tc form the marginal distributions required to calculate the likeli-

hood ratio
1 L
1 L P(E.o""E.IHl)
Mz ye00,2) = . (9.4)
- — 1 L
P(E.""’E.IHO)

Figure 5.1 illustrates the corresponding array processor structure. The
adaptive feature arises out of the sequential Bayesian updating of the a
priori knowledge of the uncertain parameter vector. In general, the numer-

ator and denominator equations in (9.4) must remain separated in the

updating sequence.

An Example: SKE in NUD

In this section, computer s.mulations of the SKE in NUD processor for
several cases will be uced as illustrations of the natural adaptive feature
of an optimal array processor when implemented sequentially. The uncertain
parameter in this case is the Gaussian noise source's location reflected
in the phase term 6 = w t . The parameter condi*ional joinc density

0n

expressions under Hl and Ho required in (9.2) and (9.3) are given by
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i _ i
p(g,lg,Hl) -Jj; p(g_(n)lmorn,Hl) (9.5)
i Nooi
p(z I_B_,Ho) =JJ; p(z (1) eyt 5Hy) (9.6)

where p(g}(n)lonn,Hl) and p(g?(n)lworn,Ho) can be found in Table 6.1 C.
The superscript is omitted in Table 6.1 C since the expressions are the same
for all L incremental observation intervals.

Figures 9.1-9,12 illustrate single computer simulation runs of the
processor consisting of 13 iterations each. Since the uncertain parameter
exists under both hypotheses, two columns of the sequentially updated a
priori knowledge corresponding to (9.3) under HO and Hl are recorded. Each
probability density function displays P(WOTN) = p(wornlgé,...,g}) versus
WOTN = Wy T, where ITER = i. The first density in each column (ITER = 0)
is the a priori knowledge. A uniform prior of p(worn) = /v for
-%/8 < wyT, < /8 was assumed in all cases. The "MAX" value indicates the
maximum value of the particular density recorded. Between the two columns
of densities is a third column which indicates the iteration number ("ITER")
and the value of the likelihood ratio ("L") at the completion of that
iteration as given by (9.4) utilizing (9.1). The lower left hand corner of
each figure records the incremental signal erergy processed (“E"), noise
power spactra heights ("N and "D"), and array size ("K"). The noise spectra
are assumed white and bandlimited to 8w0/2ﬂ Hz. The signal consists of a
single frequency at 8w0/2n Hz. 1Its energy over one incremental observation
interval is given by E =2b0(8)*b0(8). The spacing between the array elements
is assumed one half wavelength at the frequency cf the signal. The lower

right hand corner of each figure records the 2 priori probability density

function parameters ("AO" and "B0O", ser 1)), the true hypothesis in force
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during the simulation ("H1" or "HO"), and the true location of the noise

source reflected in terms of phase ("WOTN"). In all cases, WOTN = Wy, = 0.
The first six figures report single processor runs for a three element
array; the last six do the same for a nine element array. The figures are
given in pairs. In the first, the true hypothesis in force is Ho; in the
second, Hl. All figures have a signal-to-noise ratio of E/N = 1. The
noise-to-noise ratio (D/N) has the values .01, .03, and .09. Note that even
though the noise-to-noise ratios investigated were relatively low, the
optimal processor was usually able to learn the noise source's location
(under the correct hypothesis). It is interesting that under the incorrect
hypothesis, the sequentially updated a priori knowledge often peaks up at

the location of the signal source which in terms of phase was Wl = /16,

T
s
As these figures indicate, the optimal array processor exhibits natural

learning or adaptive features when implemenied sequentially.

b e e o BN e B T
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Chapter X

SUMMARY AND RECOMMENDATIONS FOR FURTHER RESERACH

Summary

This dissertation has taken a global approach to the processing of
informe ;.on from an array of senscrs. Essentially, the unprocessed outputs
of the individual elements have been considered as the observables. The
processor structure was allowed to evolve freely with the sole restriction
being the criterion of optimality. Such an approach has been emphasized
since it is not clear that the imposition of a structure on an array
processor which appear:c optimal locally (such as the utilization of beam-
formers, nullformers, and good estimation techniques) will facilitate the f

overall goal of good signal processing.

—

Specifically, the array processors discussed were to decide if the

random processes observed at the array element outputs consisted of a |

signal obscured by noise or noise alone. Any uncertain parameters in the
problems considered were treated as random variables and knowledge about 1
them was summarized by a priori probability density functions. The

resulting detectors were optimum in the sense of making a least-risk deci- ;e

sion.

The first task, then, was to specialize the general results of signal
detection theory to the optimal processing of data from an array of
sensors. The general form of the likelihood ratio was derived based
upon observables consisting of the Fourier coefficients of the observed

random processes. For a stationary noise field consisting of a componerc

:
rHM'vw*hﬂh“méﬂﬁﬁﬂ
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independent from sensor to sensor and an additive directional component,
the covariance properties of these Fourier coefficients were pursued as a
function of the observation period length.

Once the mathematics of the likelihood ratio has been written, the
optimal array processor can be implemented in various structures. Four
such canonical implementations were discussed: (1) one shot, (2) pseudo
estimator, (3) two step, and (4) sequential. The pseudo estimator
structure was shown to be the optimal counterpart of a popular ad hoc
approach to array processor design where any uncertain parameters are
first estimated, then plugged into the parameters known likelihood ratio as
if they were known exactly. The general formulation of the time sequential
structure revealed that the likelihood ratio can be realized by an
appropriate combination of single frequency components, Each is an
independent time sequential processor which utilizes its own natural
conjugate prior to achieve a certain degree of mathematical tractabiliaty.

Of particular interest were three specific problems involving either
signal or noise source location uncertainty

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD)

(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD)
(3) Signal Known Exactly in Noise with an Additive Directional
Noise Component of Uncertain Direction (SKE in NUD).
Their likelihood ratios were derived and performance reported for several
levels of location uncertainty and two array sizes. Performance was stated
in terms of the ROC curve. Several observations were made. It was noted
that the optimal arrav processor for a Gaussian signal of uncertain

direction suffered significantly less in performance degradation as
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location uncertainty increased than the corresponding processor for a

¢ -
e e o

signal of known form. For the signal-to-noise and noise-to-noise ratios
investigated, it was found when comparing the SKED in NKD and SKE in NUD
processors that uncertainty in the location of a novise source has a less
serious effect on performance degradation than a corresponding amounc of
uncertainty on the location of a known form signal source. Since perfor-
mance results for two array sizes were investigated, the effect of increasing
the array size while keeping the level of uncertainty constant could be
studied. When there was signal source location uncertainty, increasing
the array size while keeping the level cf uncertainty constant led to a
degradation in performance. No such performance degradation occurred when
the noise source location was uncertain (in fact, a slight increase was
noted). Lastly, the performance of a particular class of suboptimal array

processors operating in the same environment of uncertainty as their

optimal counterparts was investigated. For this class, an estimate and
plug structure was imposed with the estimates of signal and noise source
location not being data dependent.

Although an estimate and plug structure is appealing due to its explicit
adaptive characteristics, it was shown that the optimal array processor
exhibits natural learning or adaptive features when implemented sequentially.
Computer simulation runs of the SKE in NUD processor were used to illustrate
the Bayesian updating which occurs as an integral part of the sequential

structure.

Recommendations for Further Research
In the pursuit of a particular piece of research, it is not uncommon
for several new and interesting questions to surface. This work is certainly

no exception,

(KA A
e BT sy T KL <
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Chapter V presented the formulation of the time sequential array
processor in general terms. The resulting detector structure illustrated
in Figure 5.2 consisted of several independent single frequency components.
Within the framework of such a decomposition, it would be interesting to
pursue the feasibility of a real-time implementation of the time sequential
array processor. Conceivably, each single frequency component would consist
of a separate minicomputer dedicated to processing the Fourier coefficients
at a single frequency index.

Another question of a more theoretical nature arises in connection with
the sequential Bayesian updating of an uncertain parameter's probability
density function. Under the correct hypothesis, estimators such as the
MLE (maximum likelihood) and MAP (maximum a posteriori) have well known
properties. But, what is their nature under the incorrect hyvothesis?

For example, in Chapter IX it was noted that the a posteriori density of
noise source location would often peak up in the direction of the signal
source under the hypothesis opposite that actually in force.

Chapters VI and VIII presented detailed derivations of the likelihood
ratio and performance results for three specific problems involving either
signal or noise source location uncertainty. Their performance was compared
to a particular class of suboptimal array processors with an estimate and
plug structure to demonstrate the necessity of properly incorporating a
priori knowledge into array processor design. The particular class
studied was that where the estimates were not data dependent., A valuable
extension of those results would be the calculation of performance when

data dependent estimators such as the MLE or MAP are used.
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Appendix A

COVARTANCE ARISING FROM A SCALAR RANDOM PROCESS

. The following derivation of the covariance between the Fourier coeffi-
j cients representing a sanple function of a scalar random process is taken
from Blachman (Blachman, 1957).

Consider the series expansion of a sample function z(t) from a zero

mean real random process over the interval (-T/2,T/2)

: N 1.1/2
' z(t) = L.i.m. ] z(n)(F)  exp(irwgt) [t] < T/2 (A.1)
Y N + o n=-N
! ) where Wy =~%§
. 3 1/2 T/2
. ard z(n) = (TO f z(t)exp(—jnwot)dt . (A.2)
’ -T/2

Thus, the covariance between any two coefficients can be expressed as

* 1 T/2 T/2
Elz(n)zm)1 =5 [ [ E[z(u)z(t)Jexp[-ju, (nu-mt)] du dt .
-T/2 -T/2
‘ (A.3)

Making the substitution t+t=u =+ T=u-~t
T/2 T/2-t

[ E[2(t+7)z(t)Jexp{-ju [(n-m)t+nt]} dr dt .
~T/2 -T/2-t

E[z(n)z(m)*] =

3|

(A.4)

Assuming z(t) is stationary (in the wide sense), E[n(t+t)n(t)] = R(t) and

T/2 T/2-t :
E{z(n)z(m)*] = %-f / R(t)exp{-jwof(n-m)t+nrl} dtdt .
~-T/2 -T/2-t

(A.5)

< ————————
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By the Wiener-kKhinchin theorem

R(T) = 2 [ N(wlexp(jut)du (4.6)

where N(w) is the power spectral density function of the random process.

Thus, (A.5) becomes

T/2 T/2-t =

E(z(n)z(m)*] = 5%5 [ ] / N(w)exp[wo(m—n)tJexp[jT(-nmc+m)J dw dt dt .
-T/2-T/2-t-»
(A.7)
Note that
T/2-t ) T/2-t
_le-texp[j'r(—nwom)]dr = WT exp[]r(—nw0+w)]

=T/2-t

) 5??55%157 expL=3(-nugt0)t Hexpl3T/2(-nu ju) J-expl3 (~T/2) (-nu #u)1)
= ?:Eﬁf:ay exp[—j(-nm0+w)]sin T/2(-nw,+w) . (A.8)

After interchanging the order of P.utegration in (A.7)

E[z(n)z(m)*]
1.7 T/2 sin T/2(-nw0+w)
= ;f‘{m [T/Q N(w) (~nm0+w) exp[-j(-nwo+w)t]exp[jw0(m-n)t3 dt du
1 2 172 sin T/2(-nw0+m) .
= ;T-{m IT/2 N(w) (hugra) exp[j(mwo—w)t] dt dw , (A.9)

Using the relationship in (A.8) to integrate over t

* 5 = sin T/2(-nwytw)  sin T/2(mwy-w)
Elz(n)z(m)"] = aT [m N(w) (-nw +w) (mwy-w)

do .

(A.10)
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Making the substitution w = XWy Fx = w/w0
2w, = sin n/w, «-nw +xw.) sin v/w.(mw ~xw_ )
®o _ 0 0 0 0 0 0 0 4
Elz(n)z(m)*] = =5 / N(xwo) e TR X
—c0 0 0 0 0
z in 1 (x-n) sin 7 (x-m)
sin 7 (x-n) sin 7 (%~
= . A.11
!m N(xmo) m(%x-n) m{x-m) dx ¢ )

The covariance between any two Fourier coefficients now can be written as

[

E[z(n)z(m)*j= / N(xwo) sine(x-n) sinc(x-m) dx (A.12)

where sinc(x) = ST X
X

Note the crthonormal property of sinc(x)

o0

| sine(x-n) sinc(x-m) dx = Gnm (A.13)
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COVARIANCE MATRICIES FOR BANDLIMITED WHITE GAUSSIAN NOISE Iy

Appendix B

This section contains a set cf five covariance matricies (Figures B.1l- :
B.5) which represent successive doubling of the observatic.i period length
(Marsha1l, 1973). The Fourier coefficients representing a sample function
from the scalar random process are related by the expression
©
E[z(n)z(m)*] = / N(xwo)sinc(x—n)sinc(x-m)dx (B.1)
-

where w =421
0 T

N(xwo) = power =opeciral density function of the random process

and sinec(x) = E%%é;il .

The spectrum considered is thzc of unit height white Gaussian noise band-
limited to W Hertz. In the first covariance matrix, the observation length
is such that W = .Swo/Qﬂ or T = .S5W. 1In the fifth covariance matrix, the
observation length is sixteen times longer (i.e., W = 8m0/2n or

T = 8/W). Note how the covariance matrzcies become progressively more

diagonal in form as T is increased.
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1

L) ; x
-4,0 0.0 4,0
Fig .4, Covariance Matrix No. 4.
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COVARIANCE ARISING FROM A VECTOR RANDOM PROCESS

Consider the vector of sample functions Eﬂt) from the zero mean
stationary vactor random process observed as the collection of outputs from )
all the array elements. Appendix A has already derived the relationship
between the Fourier coefficients representing a single element's output. .
When the noise field contains an additive directional noise component, the
Fourier coefficients arising from the outputs of two different array ele-
ments will become related since a portion of the random process observed
at one element simply will be a time delayed version of that observed at
gnother. Let

zz(t) = dz(t)

and zk(t) = dZ(t—TEk) (c.1)

PR

h and kth elements of the

where Tox is the time delay between the zt
directional noise component dz(t). The Fourier coefficients representing

each observed waveform are

1 1/2 T/2
zz(n) = (TJ / dz(t)exp(~jnw0t) dt (c.2)
~-T/2
1 1/2 T/2
zk(m) = (TJ / dz(t-rzk)exp(—Jmmot) dt
-T/2
1 1/2 T/Q_Tkk
= exp(~jmw_t,, J * () d,(t)exp(-jmw t) dt .
0 2k T . 2 0
-F/Q—Tgk
(c.3)
Thus, the covariance between these two coefficients can be expressed as

o 2
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Elz,(n)z, (m)*]7,, 1= exp(~jmw 7, )
A LY ) P 0" 2k
1 le'rlk T/2
= / Eld,(u)d (t)]exp[-jw, (nu-mt)] du dt .
T 2 2 0
-T/Q_le -T/2
(c.4)
The remainder of the derivation is similar to that pursued in Appendix A
with the following exceptions
(1) (A.8) becomes
R(t) = 2= [ D(wlexp(jur) dw (c.5)

where D(w) is the power spectral density function of the directional noise

(2) (A.9) and (A.10) become

E[zz(n)zk(m)*lrzk] = exp(—jmmorzk)

1 2 T2 sin T/2(-nw,+w)
) ﬁf I D(w) (~nw_tw° exP[J(mwo-w)t] dt dw
© -T/Q-Tzk )
= exp(—jmworgk)

sin T/2(—nw0+w) sin T/2(mw_~-w)

#%-[w D(w) exp[—j(mw0~w)12k3 dw

(;nwo+d) (mmo—w)
(c.s)
and (3) (A.12) becomes
B[zz(n)zk(m)*ltzk] = exp(-jmu,T,. )
> Tk
- f D(xwg)sinc(x-n)sinc(x-m)exp[-j(x-m)C—=)2n] dx. (c.7)

-00

An interesting special case of (C.7) occurs when D(xwo) is white

(i.e., D(xwo) is not a function of xwo) and n = m. Setting D(xuo) =D
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Elz,(n)z (n)*|r ] = exp(-jnw,.t,,.) ° D fm sinc2(x»n)exp[-j(x-n)(—i&E Y2nldx "
R A X 2k 0k - T -
: = exp(—jnwotzk) «DJ sinc2(f)exp[j2nft]df (c.8)
: - -
where f=x-n and t = Tok/T * )

Note the Fourier transform pair

AN(t/T) =2 AT sinc2 fr (c.9) »
A

. ——y

Thus
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Appendix D

COVARIANCE BETWEEN ADJACENT OBSERVATION VECTORS

The total observation period now will be broken into several smaller
incremental periods. Thus, the vector of sample functions observed at the
outputs of all the array elements will be represented by a sequence of
cbservation vectors EF' In this section, the covariance between the Fourier
coefficients of adjacent observation vectors will be derived. Assume the
noise field consists of a portion which is independent from sensor to

sensor plus an additive directional noise component. Let
i _ i i
z(t) = n () + d,(t)

ivl | _itl i+l
z . (t-Tzk) (p.1)

and x nk (t) +d

i i
nk(t+T) + dz(t+T-tz )

k

where n*(t) and nl+l(t) are the portions of the observed waveforms due

k

to the independent noise, d;(t) and d:L+l

2
is the time delay between the zth and kth

(t'Tzk) are due to the directional
noise component, and Tox
elements of the directional noise. The Fourier coefficients representing

each observed waveform are

¢ L2 12 .
) = () {T/Q [ng () + d ()] exp(-jnugt) dt (D.2)

. 1/2 T1/2 . .
z;+l(m) = (%J o [ni(t+T) + d;(t+T-rgk)]exp(—jmth) dt

L e 4K e o
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L1/2 3T/2 :1
= exp[-jmmoT] . (TD / nk(t) exp(-jmmot) dt
T/2 ‘E
1/2 3T/2-1,, . )
+ expl-jmu (T-1,, )1+ () / dy(t)exp(~jmu t) ct .
T/2—-'r9‘k .
' N
(D.3)

Assuming the independent and directional noise are independent, the covari-

ance between these two coefficients can be expressed as

B[z;(n)z;+l(m)*|tzk]

expl-jmu, (T-7,. )]

k

1/2 3T/2-t T/2 . . . .
@ B EIng(t)n} (w)+ag(£)d) ()]
T/2-tk  -T/2

.

exp[»jwo(nu-mt)] du 4t . (D.4)

Note that E[ni(t)ni(u)] 0, L#k.

el

The remainder of the derivation is similar to that pursued in Appendix C
with the following exceptions

(1) (C.5) becomes -

R(t) = 2= [ [N(w)+D(w)] exp(jut) du (D.5)

(2) (c.6) becomes

i+l

S i
¢ E[zl(n)zk

(m)*ITZRJ = exp[-jmwo(T—rzk)j

sin T/2(—nw0+w) sin T/2(mw0-w)

(-nw0+w) (mwo—w)

ii . #%.{m [N(w)+ 6y, +D(w)] exp[-J (w-muy(t-7,, )] du

where 62)( ={

(D.6)
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and (3) (C.7) becomes
i itl, %
E[zz(n)zk (m) 'le] = exp{-jmmo(T~rzk)]
> Tox
. ] [N(xwo)~6£k+D(xwoﬂainc(x—n)sinc(x-m)exp[-j(x-m)(l—-1F—)2n] dx .
-
(D.7)
In a fashion similar to Appendix C, an interesting special case of
(D.7) occurs when both N(xwo) and D(xwo) are white and n = m. Setting
N(xwo) = N and D(xwo) =D
iy, 141,k - : . N
Elzy(n)z, "~ (n) [rsz = expl-jnu (-1, )]+ [N+8 ), +D]
° 2 Tk
. f sinc (x-n)exp[—j(x-n)(l—~ir02w] dx
-0
- l-.- - » [
expl jnwo(T Tﬂk) in sz+D]
,I” sinc?(£)exp(f2nft) af (D.8)
-~ 00
whera f=x-n and t = Tzk/T -1,
Thus, making use of the Fourier transform pair in {C.9)
ELzE ()22 (m)* |, 1 = expl-dnu (T-t, )7 « [N+6, +D] + { - Tk
zg(m)z, " “(n) |7, 1 = expl-jnu (T-t,, ok 7}
-1 012
(Dog)
i
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Appendix E
MATRIX INVERSION
The covariance matricies encountered in the problems discussed in
Chapter VI can be inverted using a technique due to Bartlett (Bartlett, 1
1951). Let the matrix to be inverted be of the form
- %
Ay=B+cd (E.1)
where éo and B are K x K matrices and ¢ and d are K-dimensional column
vectors. Proceeding formally
-1 _ -1
AyT= (B + cd”)
=B - e a5 s (e gD

where we note that d*B-¥g is a complex scalar. Summing the geometric series

completes the derivation

1 -1 pleg™s?
56' =B - .h_AE%;fT_ . (E.2)
1+d'B ¢

This result can be extended as follows. Let the matrix to be inverted

be of the form

"
>
-+~

|®

Rai]

(E.3)

where e and f are K-dimensional column vectors. Thus, utilizing (E.2)

(E.4)
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Appendix F

e~

THE CALCULATION OF PERFORMANCE FOR LIKELIHOOD RATIO

PROCESSORS VIA COMPUTER SIMULATION®

AT @ ey, Vit MR ESE

A complete description of an optimum detector includes not only the

likelihood ratio A but also the processor's ROC(receiver operating charac-

teristic) curves. The false alarm probability Pp and detection probability

PD are

Py = In p(A[H)) aA (F.1)

and

Py = fn P(AJH,> aA (F.2)

where n is the detection threshold value and p(AlH ) and p(AlH ) are the

probablllty density functigns of A under the two mutually exc1u31ve and

¢ m AMUS, PRVIPRY PR

P R R P A » oy -

Ll . S P V% S IS . i
exhaustive hypotheses H that a 31gnal is present and H that it is not.

Peterson, Birdeall, and Fox (Peterson, 3irdsall, and Fox, 1954) have shown

that
p(AIHl) = Ap(A[HO) . (F.3)

Thus, PD may be written equivalentiy as

= [ Ap(AlHo) dA . (F.4)
n

The expression (F.4) is particularly valuable when the densities of A

under the two hypotheses cannot be determined analytically. Typically, one

# The text of this appendix has been accepted for publication in the IEEE i
Trans. on Information Theory (Hodgkiss and Nolte, 1975).
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W tonen

then carries out a Monte Carlo simulation of the optimum processor and from

- .

his results forms estimates ﬁ(AIHO) and ﬁ(AlHl) of the desired depsities.

*-

We see that (F.4) implies that only the density under H, actually need be

0

obtained. One clear benefit of this approach is eliminating the need to
simulate the signal (which may contain uncertain parameters) along with

the noise to provide receiver input under H Here we make the distinc-

1
tion between the optimum processor which contains both signal and noise
parameters and the simulated input to the processor which may consist of
noise alone or signzl plus noise depending on whether the true hypothesis
is HO or Hl'

Note that (F.4) places a great deal of emphasis on the upper tail of
p(AIHO). An equivalent expression is

n
P,=1- ]0 Ap(A[H,) A . (F.5) ‘

For many problems, particularly those whose underlying statistics are

Gaussian, p(AIHO) will have both a large portion of its probability mass
concentrated in the region A < 1 and a long, slowly decaying tail extending
to infinity. We would expect any computer simulation to generate only a

few observations in this extended tail region. Any calculation which

emphasizes these points (such as the first moment) will be strongly affected
by their exact locaticn. In this nase, the emphasis arises out of the
multiplication of p(AiHO) by A. Thus, (F.5) is proposed as a more desirable
means of calculating PD than (F.4) from the standpoint of utilizing numerical
simula“ion results since it avoids heavily weighting the tail region as much
as possibie. A more quantitative rationale is discussed in the appendix.

Summarizing the relevant equations for estimating the ROC we have
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) .o

B = F.6
% Py [n p(AlH,) aA (F.6)
g »
¢ - no,
S Pp=1-[ Ap(A[H;) dr (F.7)
: 0

where the circumflexes denote estimates of the true values.

If we had been unaware of the ' )ng upper tail,instead of (F.7) in calcu-

lating the ROC we might have used

Py = fn Aﬁ(AlHo) ana . (F.8)

Note that (F.7) may be rewritten as

g
"

b= 1- ]0 Ap(AJH,) dA + fn Ap(AlH,) dA

- o ] .
1 E{AIHO} + Pl (F.9)

where E{AIHO} is the first moment of ﬁ(AlHo).

The following example will illustrate the error incurred in using
(F.6) and (F.8) instead of (F.6) and (F.7). We consider the problem of
detecting a Gaussian signal in Gaussian noise in which 1he covariance
matrices are diagonal and the samples have equal variances, as discussed

by Van Trees (Van Trees, 1968). The likelihood ratio is

2 H
A(R) I 1 s _ 7 g2 3 (F.10)
2 ETa P n .
|x Il 2 202 9%+0% i=1 H
1 n n s 0

where the Ri are the received data, oi and o: are the noise and signal

variances per sample, and KO and Kl are covariance matricies. As a

specific problem, we w._..L investizate the case where M = 2 and oi/oi =y,
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ROC's resulting from 25 Monte Carlo simulations of N = 2000 runs each
were calculated. The output of each run was a single value of A cond tioned
to Ho, not just a sufficient statistic. The density S(AIHO) Wwas non-negative
and its zeroth moment was constrained to be unity. No constraint was placed
on the first moment. False alarm and detection probabilities were calculated
as follows

P = % 1 (F.11)

Pr = 25 A (F.12)
N
where the summations extend over all A > n, and

~ 1
PD =1-35 LA (F.13)

where the summation extends over all A < n. The mean value ROC's are shown
in Figure F.1 along with two representative 95% confidence intervals on
detection probability. The triangles represent mean (ﬁé,ﬁp) points cal-
culated using (F.12) and (F.11); ¢ircles represent mean (éb,ﬁF) points
calculated using (F.13) and (F.11). Note particularly the large variance
associated with calculating detection probability via (F.12) as opposed to
(F.13). A detailed account of ﬁp, ﬁé, and ﬁD means and variances for the
threshold values investigated is given in Table F.l. The mean (ﬁn,ﬁ?)

points describe an ROC that is essentially equivalent to known analytic

results (Van Trees, 1968) while the mean (ﬁ',ﬁ?) points differ significantly.

Appendix

A theoretical model of a standard histogram cstimator for p(AlHO) also
suggests the use of (F.7) instead of (F.8) for the estimation of detection
probability. As a specific example, the same Gaussian signal in Gaussian

noise problems dis~ussed in the text will be used.
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Figure F.1. Mean ROC's via Computer Simuiation.




Threshold(n)

mean

.200 1.000
.218 .900
.239 .799
. 266 .697
.301 .59/
.3u8 . 495
416 . 395
.52y .298
. 725 .200
.912 . 150
1.262 .101
2.197 .050
3.825 .024

'l;d>

var.

.000 E-04
.502
<717
1.420
1.490
1.5C0
.716
.615
. 368
. 428
.292
.202
.085

s "”"’"”-:"T”a oz BB “-z ',‘

>

mean
.868
. 847
.824
.799
.770
.737
.699
.650
. 594
.554
.501
.419
. 344

Table F.21

g BT o T

Means and Variances

var.

.143 E-01

.luy
.1kh
- 145
<146
<14y
.143
14l
-142
. 143
.1u43
.139
141

mean
1.000
.979
.256
.931
.902
.809
.831
.786
.726
.686
.633
.551
. 476

]
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‘, i

var. -

.000 E-05 i
.220

.333 lJ

.780 _

.857 l§
.941

. 1486 ;o

.832 L

1.039 .

2.3u6 L

2.474 .
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Let ﬁ(A]HO) be our histogram estimator of p(A]HD) consisting of K = 250
R cells each of width AA = .2 and an end cell representing all probability
beyond the truncation point T = 50. The distribution of observations in the

.th . . . . . .o . . .
b 1 cell is binomial with parameter P; and, as a simplification, the distr._-

K
&

butions will te assumed independent from cell to cell. (In a3 w.3lity, the

-

joint distribution of observations in all cells is a multinu.rnal in the

T
Kowtd 585

K + 1 parameter family of distributions.) The discrete versions of (F.6),

A

Y

= (F.7),and (F.8) are

| _—

| Pp. = ig ' P, [H, (F.1u)
] n

E' ]

e ! - n'-1

| Pp=1- ] AP (F.15)
E i=])

3 i . K

Py = oy AiPiIHO (F.16)

o

where Ai and Pi,HO are the likelihood ratio and false alarm probability

; associated with the ith cell and n' is the cell identifier corresponding
to a threshold value 1.

. Our comparison of (F.15) and (F.16) will consist of calculating RCC's

¢ based on each and evaluating var(PD) and var(ﬁé) for various values of n'.

b The equation resulting in the larger value of bias and variance will be con-

3 sidered the least Aesirable of the two. For a single cell

2 var(P, [H ) = l-p.(l—p ) (F.17)
1V NOFLtT R

wrzre N equals the total number of cbservations. Since independence between

cells is assumed

3 i

' LN 2 |

3 var(Ppy = LAy 5 e {1-py) (F.18)

i i=}

E var(g') i} K¢l A2 1 oy ri9)
! D i:n' i N pi pi; iod
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Using a known analyti~z expression for p(AlHo) to derive values of P;

(Van Trees, 1968), the ROC's in Figure F,2 were calculated. Also shown

are two representative 95% confidence intervals on detection probability.
Note particularly the large variance associated with calculating detection
probability via (F.16) as opposed to (F.15), A detailed account of IQF,

ﬁﬁ, and ﬁD along with their variances is given in Table F,2. This ana-
lytic investigation complements the empirical results of the Monte Carlo
simulation study. Both suggest that the calculation of detection proability
with the aid of (F.3) is less biased and less variant when using (F.”)

instead of (F.8) for data arising from z simulation of the likelihowd ratio

under Ho.
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Figure F.2. ROC's from Histogram Model.
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Threshold(n') P

F

N O FEoWwN

12
20

1.000
<419
.252
.1786
.133
.105
.189
. 242

~

P

~

P Pﬁ, and PD and their

var.(ﬁFl

3.120 E-04
1.810
1.210

.862

.656

P'

.818
. 644
.560
. 507
468
.438
. 348
.278

Table F.2

Variances

var.(ﬁf)

.330 E-02
.329
.327
.76
.324
.322
.315
.305

i
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ED var.(ﬁil
1.000 .000 E-Ou4
.826 .110

743 ,284

.689  .457

.650 .624

.620 .784

.530 1.510

L460 2,530
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Appendix G

COMPUTER PROGCRAMS

The computer programs used in obtaining the optimal array processor
performance reported in Chapter VIII are listed below. Four sections
compromise this appenidx

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD)

(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD)

(3) Signal Known Exactly in Noise with an Additive Directional

Noise Component of Uncertain Direction (SKE in NUD).

The fourth section contains general programs which are shared by those in
the first three plus the program which calculates detection and false alarm
probabilities.

The Monte Carlo simulations were performed on a Digital Equipment
Corporation PDP-9 comput<r. Each problem was broken into a sequence of two
steps as illustrated ia Figure 7.1. In the first step, Gaussian random
numbers (mean zero, variance one) are read from a magnetic tape. For each
simulation run, the collection {Gl/GO’~1’§0

on another magnetic tape. Each collection is read during the second step

} is calculated and then written

and the remaining numevical integrations are performed. As they are cal-
culated, the likelihood ratios are written on a DECtape which is eventually
read by the program which calculates detection and false alarm probabilities.
Several important concepts in the calculation of performance for likelihood

ratio processors via computer simulation are discussed in Appendix F.
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§ -
Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD)

(See SKE in NUD Section for "SUBROUTINE GAUSS1M)
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.

GAIISSTaN SEGMAL OF UNGERTAIN DIRECTLOY I éA”%?lAN NOL

S
DART |

$A DTF1 | 3 %4 DTF2 2 ,
PROGRAS CALLS SHHRINTINES (4, OUT, PARA41, ORNDER, AWD SKID

INTTIALLIZING

NDIMENSION ZAC1D), Z1C10), 1NDCi0D), ABRCED, 103, AIC10, 10D,
GC1DY, ABRICIND), ANl ICIOD)

COMMON X1(25M), X2¢(250)

IXXX=251

1YY st

1RLOCK=0

SAT=SART(2,.)

INDHT LARAYETERS

NALL PARAMICISKIL, 4, £, [RIING)
IFCISATIP.NE. M) €Al SKI9¢, 161

0’0LR HANDLER FOR OUFPUTTING SUFFICLENT STATISTIOY

(121
CALL ORDER(M, K1, 1 YD, NIIM)

NG 200 JJd=al, TWINS
NO 140 4=, 9

SINGLE FRIRQUENCT CONOITIONAL SOLUTION

N0 IND f=1,4

BaLL [N(ZR¢1), 14XY)
IF(M1.ENe1) 2](1)2SATZRCT)
ALl INCZLCTY, 1%
IF(MA.800 1) 2LC2)=D,

GtM4)=21),
nn 1in 1a1,%
GO 2 G+ 2A(1H29(T) & ZICL)«LICE)

NO 130 L=,

NLR30,.

SLl=0.

KL><~L

N0 120 1=},

TLalsL

CLR3 CL" + IR([HY=/4RCIL) + 2ICHr«21CIL)
CLI» CLI + ZRCII®ZICIL) ~ ZEC1)%AUCLIL)
ARR( 44,L)2CLR

ABI(14,L)=CLIL

CONTLINIR

el
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SRS 9
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Qan

150

160

170
130

> Ex N1

—

0

Do

195

200)

210

T
e R T it 2

GCOMBINE SINGLE FREAQUENCY CONDITIONAL SGLUTICNS

GG={Q,

N0 150 443 ,M

GGzGG+G M)

no 150 121,100

ABRICL) =),

Asl ()=,

nn 180 M= g,

NN 170 L=l.K!

INDEX= (M=)l + |

ARRICIMDTLYX Y2 ARICIHORY) + AIR(AM, L)
ARLLCINDEX)* ABI ICINDEX) + AYL(44,L)
CONTINUE

nHT YT

CALL ONT(GG,1'07¢, IHLACK)

PO 190 L=t,NUq -

J=INDCL)

CALL OUTCAHRIC1), LYY, [ BLNCK)
Call OUTCASLICI)» IYYY, 13L0CK)

EN OF ONE SIMULATION RN

IFCIIWRE. (357100 %109 33 TO 200
WRITS(6,135) .14
FORMAT(2X, | SHUINS COMPLETEND=, [ §)

CONTINUE

caLl. OUT(0., 250, IBLGCK)
WRLITE(A,210) 13LICK
FOR4AT( /72X, THI 4LOCK >, 13)
STNP

END

e p
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20

30

an

50

60

SUARDHTINE INPIHTS PARAMETERS FO3 GAUSI

SHAROUTINE PARAMI(ISKI P, K, LRIINS)

WRITE(6, 1)

FOIMAT(/2X, I6K3LOCKS (ISKIP) TO RBE SAIPPED ON TAPE/)
READ(CS,S) ISKIP

FORAAT(IS)

WRITE(K, 7) ISKtP

FORIAT(/2X, 6HISKIP=,15)

WRITF(6: 1)

FORMAT(/2'¢ A2HNIMBER OF FREQUENCIES () AND ELEMENTS (£)/)
READ(S5,20) M, K

FORAT(212) °
WRITE(A, 3D 4, K

FORMAT( /72X, 2H 43,12, 5X, 2HK=, [ 2)

VR TEC(H,4D)

FOR4AT( /72X, JAHNIIMBER QF RUNS/)

REANDCS, 5D) IRIINS

FORMAT((S)

URITE(AK, h()) IRIINS

FORMAT(/2X, SHRIING=2,15)

RETHIN ..
FAND .
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GAIISSIAN SIGNAL JF UNCERTAIN DIRECTION IN GAUSSUAN NOISE

—

PART 11

$a DTFL | 3 $A DTF2 2 .
PROGRAM CALLS SURBROUTINES IN, OYT, PARM2!, ORDER, SK1IP,
RESNIS, GAUSS1, FG21S

INITIALIZING

NDIMENSION FI(S50), PI(200), A{20,20)

COM4IN X1(250), X2(250), INDCI09)s ABRC100), ABI(100),
C» A10AO, CONST, ANCHO, ADSBO, #, NUA

EXxXx=251

IYYYal

IRLOCK=0

INPUT PARA4ETERS

CALL PARM2UCISKIP,4,K, [RUNS, S, AN, AO»BO)
IFC(ISKIP«NE. 0} CALL SKIP(2,1SKIP)

ORDER HANDLER FOR INPUTTING SUFFICIENT STATISTICS

1=z~
CaLL ORDNDEU(M, A1, IND, NUM)

C2S/(AN+FLOAT(L)*S)

N=ANxrK
Al2(ANS# (= 1)) «(FLOAT(X) «S+AN)
N2a(N)/7Q1)=xeM

Ng 200 JJat, 1RUNS
NPT SUFFICIENT STATISTICS

CALL IN(GG, IXX¥)

DN 10 L=21,N14

CaLl. TNCA8R(1), 1XXYX)
CALL INCASIC(1), IXXX)

CALCHLATE L

[FCANLEN.) ALNAOD=)Y,

[F(AD.LE«0.) GO TO 20

ALl RAESNIS(A0, 2, F1, Pl)

ALDAD=FLC 1) .
CONST2FLOAT(4=-1)/¢2. 3. 1315 22A1DAD)
ANGC3NANCAS( AN

ANSRD3AN®SIN(BD)
YR)I4123.14153/FLOAT(4~1)

Xq041=-¢R041

R o R B o S Y




T YT AV YRS

aSON Qa0

195

200

210

CALL GA'ISS1(XR0M 1,041, 6, ANEA)

AL=s Q » EXP((C/2.)>%GG) * AREA
ouTPuT L

caLl, ONIT(AL,IYYY, IBLOCK)

END OF ONE SIMULATION RN
IF(JJNE(SJ750)250) GO TO 200
YRETEL(6, 135) JJ

FORMAT( 2, tSHRINS COMPLETED=2,15)
CONTINIIE

CALL 0'IT( 0,250, I BLNCK)

NRITE(6,210) IBLOCK
FORMAT(/ 2%, THIBLOCK=, 1)
STO0?

END
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)
C i
c SUBROUTINE INBITS PARAMETERS FUR GAUS2l :
c ;
| SUBROUTINE PARMAICTSKIP, M, €, [ R4S, S, AN, A0, BO) :
! VALITECH, 1) i
1 FORMAT(/2X, I6HBLNCKS (ISAIP) TO BE SL{PPZD ON TAPE/) ;
REAN(S,S$) 1SKLIP ;
5 FoRMaT(le) :
WRITEC(AS 7) ISKIP ;
7 FO4AT( /2%, EHISKIP=,15) . :
WRITE(6, 10} . 2
10 FORMAT( /24, A2HNY4RE] OF FREAUENCIES (M) £ND ELEMENTS (K)/) ‘
REANCS, 20) ¥,K :
20 FORMAT(212) :
VRITE(A,39) M,K :
: an FORHAT (/2%€, 2442, 12, 5%, 2HK=, [2) :
NRITEC A, 40) ;
: 4 FORMAT(/2X, 14MNIMBER OF RINS/) ;
: READLS, S0 IRUNS :
- 50 FORMAT(IS) -
\ VRATECS, 60) [RYNS
60 FORMAT( /2%, SURINS~, I5)
WRITECS, 7)) - '
= 70 FORMAT( /2%, 34{POVERS OF SIGVAL (S) AND NOISE (N)/)
t REAN 5,89 S, AN
E f K0 FOR4AT(2FS.2)
g WRITR€6,90) S, AN
- 90 FCAAT( /2%, 2432, FS.2, 5, 24V=, 7S 2)
é : WRITECH, 100)
i 1na FORMAT(/2X, 32HINCERTAINTY PARA4ETERS A0 AND 80/)
A }SANCS,115) RO, RO
110 FORIAT(2F5.2)

WRITE(%.120) a0, BO

i29 FORSAT(/2<, 3HAN=, F5.2, SX, 34802, F5.2)
RETHRY

END
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d c FIUNCTION CALLED 3Y GAISS1 IN PROGRAM GAUS2U

. FUNGTION Gl(WwoTS)
DIMENSION JNC10)
COMMON X1(250), X2(250), INDCI00),ARRC100), ABICI00),

; . ! C, AIOAO,. CONST, AOCBO, AOSBO, M, Nil%
c
SS=0.
Cc
! c

! PO 10 I=1,NIM
ARGz FLOAT(INDCI)>=1) * WOTS
10 382 SS + ABR(I)*COS(ARG) - ABICI)*SIN(ARG)
5520%8S + AOCBO*COSC(FLOAT(M~1)*WOTS) - AOSBO*SINCFLOAT(M=1)+WOTS)

G1=CONST*EXP(SS)
RETURN
END
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‘Q’_m

Signal Known Except for Direction in Noise with an Additive

v

Directional Noise Component of Known Direction (SKED in NKD)

; ,a
3 i

3 L
4 (See GUD Section for "FUNCTION GL(WGTS)") L
o

b :
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i c SIGNAL £NOWY EXCECT FUR DIRECTION
. c IN NOISE OF £NOWN DIRECTION
4 G PART 1
: . c
i c $A OTF! 1/DTF2 2
4 . c PROGRAYM CALLS SIBROVUTINES IN, OUT, PARA43s ORDER, AND SAIP
3 c
n
g INITIALIZING

REAL IL®, IL{, NWOTN

NIMENSINN 7ZR(10), Z1C10), INDCIDO0), ABRC10,10), ARIC10,10),
I a”R1C1INM, aBIIC10M

COMMON X1(250), X2(250)

1XXX=251
1YYYsd :

L5LOCK=0

(NPT DARAYETERS !

aJan

CaLL PARAMICISAI P, 4,4, IRINS, ESs AN, D)
IFC(ISKIP.NE.0) CALL SAIPCI,ISKIP) .

aQAon

DRNER HANDLER FOR OUTSHTTING SUFFICIENT STATISTICS

Kl=K~1
CaLL ORGER(A,K 1, IND,NlIM)

(1]

WRITECA, 1) .
FORMAT(/2¢, L4HRINS COMPLETED/)
DG 200 .Jd=31, IRINS

3

A SINGLFE FREQUENCY SIGNAL 1S ASSUMED
SINGLE FREQUENCY CONDITIONAL SOLUTION

GENERATE FNIRIER COEFFICIENTS HNDER HO

QOO AAnD

NWOTN=23. 1415972,

HOR=SQART(ES/2.)

Hol=0,

CN=SNRT(AnN/2.) N
CNaSART(N/24) )

CALL INCYDR, IXCO

CALL INC?DL, £ XXX)
N1 100 131,K

ARG=FLOAT ([~ 1) xNWOTN
fS= CNS(AIG) .
SNz SIN(ANG)
GCALL INCTNR, [XXYXD)
LR(IY3 CNAINR + CD=CYDRACS + YD[xSH)
CALL TNCYNL, IXXO
1IN0 ZICI)= CNaYNL + CD&CINIRCS = YDR4SN)
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c _ - {
¢ SHFFICIENT STATISTICS INDEVENDENT OF TS . L
N
C =07 CAV = (AN + FLOAT(L)x=D)) )
Glx ~C(FLOAT(L (AN + FLOAT(K-1)%xD)) / (ANACAN + FLOAT(K)*D))) j
1 * (80’%80% + 4H0{=BOCI) L
22 £2./78M) * (ZR(1)%xBOY + Z1(1)x301)
[eRE X3 )Y
NO 150 I=1,« ‘
ARG= FLOATC(I~-1) & NWOTN t
1o G3= 63 + (Z2(1H)*BOR + ZIC(I*BNIIXCHSCARG) + C(ZR{1)%BO{ -
I - Z21(1)*BOD=SINCARG) . _
G3= 2.450%G3 . ) i
G= Gl ¥ G2 - G3
[ .
c SUFFICL{ENT STATISTUICS DEPEVDENT ON TS
c . ,
N0 130 L=1,4K1 , B
Lis L+
SLRz (1e/7AN) = CZR(L1)<BAR + ZTCL1)¥8BOD)
GLI= (1e/AN) * (ZRCLI1I&BOL - ZI(L1)%30R)
e .
HL.2=0.
HL1=6.

DY 12N (21,4
ARG= FLOATC(I~L1) = NWOTH
L1 HLR + (Z(1I«BOR + A1(1)=BRDI)«COSCARG) *» (LR(I1)=BOL
I~ ZIC1)«RNV)«SINCARG)
120 L= LI » (ZR(1)«RBOL -~ LICT1IxEOR) 530S (ARG)
I = (2¢1)=anR + Z1(1)xROI)«SINC(ATG)
T OHLOz gaMLq
HLI= C=HLI

G
KLaK-L,
A%G= FLOAT(L) * NWOTN
Cil= C » FLOAT(AL) = (AN~301 + BOI«A0I)
ILR= CIL * COSCARG)
ILI= CIL = SIN{ARG)
C

ARR(L, L)= GLR - HLR + LR
130 AR (4,1.0= ~GLT + .1 - (LI

CO49INE SINGLFE FIRAUENICY SOLUTIONS

alan

25 150 121,100
ARRIC{)=N,
150 ASI1(1)=0,
No $70 Lat,ic) .
(NDEX® (4~ 1)el, + |
ARRICINTSX)a ASRICINDEY) + ABRC1,LD
170 A3l 1CINDEX)2 A4I 1(14DY) ~ aRI(4,L)
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:
re
: 4
T fe ,
. ;‘ :
i, CALL NMTCG, Y2, 13LOCK) ’
DY 190 I=1,NiM
J2INDCD)
P CALL OUTCARR I, 1YY7, 1 ALOGK)
pod 190 CALL ONTCASBI1C.I), 1YY7, 1HLOCK)
i c
P - ¢ END OF ONE ST4HLATION Wiy
1
i c
} IFCIeNE. L 2100)«100) GO TO 200
URITEZ,. 195) .1,
: 195 FORAAT( 2%, 15)
b c
b, 200 CONTINYSE

caLL OUT(0., 250, [HLOCK)
WRITE(S,210) IBLOCK

210 FORMAT( /2%, THIRBLOCK=,13)
STOP

X END

g i v
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i ap

SURBIQNUTINE INOIUTS PARMMETERS FOR SALED)

SHRRCHUTINE PARAYM3(ISKI P, ¥, 4, IRIINS, ES: AN D)
HURITE(H, 1D

FOR4AT( /2%, 36HBLOCKS (1SLIP) TO BE SKIPPEN ON TAPE/)
REANCS,3) ISKIP
FORMAT(LS)

WRITECE, 7)) 1IS4LIP
FORMATI/72¥, SHISKIP=,[5)
WRITE(6, 1)
FORMAT( /72X, 424NIIMRER OF FRERIUENCIES (M) AND ELEYMENTS (£)7)
REANCS5, 205 M, £ . .

FORMAT( 27 2)

WRITE(6,30) 1, K

FORAAT( /72X, 2HM=, 12, 5X5 2HX=, [ 2)

WRITE(6,40)

FORMAT(/72%, 14HNNIABER OF RUNS/Z)

REAN(S, 50) IRIINS

FORMAT(IS)

WRITE(S, 60) IRINS

FOR4AT( /72X, SHRIINS=, 15)

WRITE(H, 70)

FOMAT( /72X, 4 IHPOWERS OF SIGNAL (ES) AND NOISE (N AND D3/)
REANCS5,30) ES, AN, D

eORMAT(3IFS.2)

WRITE(S5,90) ES, AN, D

FORMAT( /22X, JHES*, F542, 5%, 24N=, FS. 2, 5X, 2HD=, F5.2)

QETHN

END
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STGNAL (NOWa EXCEPT FOR NIRECTION

{N NDISE OF ANOWN RIRECTION

PART 11

sA DTFI 1/NTF2 2

OoxNGRAM CALLS SUBRONTINSCS IN, OUT, PARN44, ORDER, SKIP,
BESNIS, RO41, FG2U '

INITIALIZING

DIMENSION FI1(50), PI{2003, A(20,20) .

COMMON X1(250), X2(250), I8DC100), ABRCIO0C), ABIC100),
G, AlOAD, CONST, AGCB0, A0SR0, M, NUM

14XX=2251

100>}

18L0CX=0

INPUT PARAMETERS

CALL PARA44 (16419, 1,4, [RINS, A B0) .
[F(ISKIP.NE.O) CALL SAIPC(2,ISKI™)

ORNER HANDLER FOR INPHUTTING SUFFICIENT STATISTICS
KizK~1
GALL ORDER(M, A1, IND,NUY)

C=z2,

WRITE(S5, 5)
FORMAT(/2%, 14HRIINS CN4PLETED/)
NG 200 JJ=1, LRUNS

1MeUT SUFFICIENT STATISTICS

CALL IN(G, IXX%)

0N 1N 1=1,N'4

CALL INCAR3(1), [¥YXY)
CaLL INCARICL), I1XXY)

CALCHLATE L
UNGCERTAIN DIRECTION

IFCADLE«Os) AIBAO= 1.

1FC(AOD>LE.O.) GO TO ‘20

0ALL BESNIS(AN,2,F1,PI)

AIOADIFIC D)
CONSTaFLOAT (M= 1)/¢(2.%3. 13159«Al OA0)
ANCROTA0XCOSCPY)

ANSBNaA0XSINC 30)
YRO%123.14159/FLOAT (M=~1)
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200

210
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XROM |2~ YROYL .
CALL HOMI(XROMI,YROMI-Rs 13

AL= EXPC(G) = A{L, 0D

cUTPHT AL
CALL OUITCAL, [YCY, 1ILQCK)

FND OF ONE SIMILATION RUN

IFCISNE.CSS/750)850) GO TO 200
WRITFR( A, 19%)
FORMAT(2X,15)

CONTINIE

CALL OUT(0., 250, 18LOCK)
WRITFR(A,210) 11L0OCK
FORMAT( /2%, THIRLOGK=, 13)
sSTOP

FEND

Brvend
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SHAROUTINE INPIHTS PARA4ETERS FNR SLED2U

SHRARMITINE PARAM4CISKLI P, 4, £, I RUNS, A0, 8C)
NWRETE(K, 1)

FORMAT( /72X, 3AHRLOGCAKS (ISLIP) TO BE SKIPPED ON TAPE/)
READ{S,5) 1SKLIP

FOR4AT(LS)

VRITE(%,7) 18LLP

FORIAT( /2%, 6HI A1 ©2, 15)

WURALTECK, 1 D)

FORSAT( /2%, A2HNIIMYER OF FREQUENGCIES (M) AND ELE4ENTS (X2/)
REANCS, 20) 4K

FORMAT(212)

HRIITR(5,307 M,K ’
FORMAT( /2%, 24HM=, 12, §X, 2HL=2, (23

WVRITECH,40)

FUQ1AT(/2¥)!@H~”1HEQ OF RHNS/)

RFEANCS. 30) LRINS

FOR4AT(LIS)

WRITE(A, 80) IRNNS

FOR4AT( /2, SHRING=,15S)

WRITE(S, 1H))

FOR4AT( /72X I2HIINCERTAINTY PAR34ETERS AQ AND 80/
READCS, 110) a0, 89

FNIAT(2F S 2)

NRATELH, 120) a0, 90

FORAAT( /2%, 3HAN=, FS 2, 5X, 3H80=, FS.2)

QAETIIRN .

END

181

4,
Yk n %




R o5s e 5T EE TN

QIO

(2R3 Iy]

[T K3 K1)

w DN

N &

182

SHARDYTINE ROMIC(X,YsAs1)

THIS SITARNUTINE FORMS THE INTEGRAL OF GI(P) FROM X TQO Y
THE AHSWER 1S QETIHINED IN AL, D)

PROGRAM NEEDS FUNCTION G1(P)

NIMENSION A(21),20)

N=20

ACL, 15 2(GL XD +G (Y I R(Y=) /2,
DO 3 1=22,N

RECUR}

Sif4=0,

IXK=2«x(I-1)~1

D0 1 J=1,1K,2

Alzd

SUMaSHI+GICX+ ((T=-X) /(2exac(l=-1)))%AJ)

ACTL 1)Y= e SXCACL~ 1, 1)+ ((0=X) /(2% (1-2))) «Sij4)

EXTRAL

11=1-~1
DO 2 K=1,11
ALK+ 1) (A 2el) «ACT,KX)=ACTI=1,4)) 7CR %%~ 1.)

IFCARSCACTLI)-ACI~1,1~1))~,1E-02) S5,3,3

CONTIMUE '

YRITE(Hs )

FOR4SAT( /72X, AGHWARNING « INTEGRAL 1| REAUIRED 20 [TERATIONS £ )
RETHQN

END
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Signal Known Exactly in Noise with an Additive Directional

Noise Component of Uncertain Direction (SKE in NUD)

(See SKED in NKD Sectior: for "SUBROUTINE PARAMY"; random numbers uniformly

distributed between zero and one are read from DECtape by ''SUBROUTINE IN3")
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SIGNAL ANOWMN EXACTLY 1IN NOISE WEITH A DIRRECTIUWAL
NOLSE CH4PONENT OF HNCERTAIN NDIRRCTION X

e Xe)

1]

PART 1 (STIICTHRED FOR A CHALIN) .

$A DTF1 1/DTF2 2/0TF3 3
PROGRA4 CALLS SUBRDUTINES: IN,OUT, IN3,PARA1S, ORDER, AND SKIP

DO0000

G INUTIALIZING

REAL NWOTS, NWOTN

C0440N X1€250), X2(250), X3(2510)s ZRCI0Y, Z1C10), INDC100),
1 ASROCI0, 10), ARIOCIO,10), ASRIC10,10), ABLIC1D,10),
2 G(10), AAR40C100), ABIMO0CIO0Y, ABRMICIOD, ABI4ICI0M)

IXXX=251

£7¥Ya}

IR8LOCA=0

I1XX3=251

SQAT=2SART(2.)

INOIT PARAMETERS

00

CALL PARAMS(TISA19, 4,4, 118K, 5%, 4N, i,, A0, RO)
IF(ISIP.NE. D) CALL SAKIPCL, [SK<IP)

ORNDER HANDLER FAR OUTOUTTING SHFFICIENT STATISTICS

S0

{13-1
CALL 09DER(M <1, 1D, NI1)

WRITE(4, 10)
19 FORAAT( /72X, 14HRIINS COYPLETEN/)
no 299 J.j=1, IRUNS

CHOOSE a RANDOY NOISE DIRECTINY

I Y]

GALL 70S(NNOTN, a0, 1XX3)
WATN=NUNTN/FLDAT(4-1)

A SINGLE FRSNIENC? SICNAL [S ASSIHAED aT (4= 1) »Wn=ANuw)

aan

BOA=SNAIT(ES/2.)

INT=Ge

ON=QNAT( AN/ 2,)

CNzSARTI(N/2,) *
Cl1=(Ql+FILNAT(L= 1) eN) /(AR (QIFrFLONAT (L) «N))
C22N/ (AN (AN+FLOAT () *xDN))

3]

nn (31 AM=1,41
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34 G GENFRA "% FOIBIIER COEFFICIENTS UNDER HO
¢
- CA L GSNLCIX X MMy WOTN, SQTH CNs CD)
H G
o G SHER.™ L5 TCATISTICS IMDEMENDENT OF TN
caLL QUFITN(;"{‘iaCl:MDNlJOTq;Hl')"?p BOL,K2G1,G2)
. o
- G Y » SLENT STATISTICS DEPENDENT OM To !’
¥
CaLl SUFNTRNOK 154, ¥, M L YT S, 3OR, BOIL 022
o
. 131 L, N INHE
¢ .
{ s CF 4 IND CINGL , FREMENCY SOLUTIONS
G .
{., wetile T L 5162, G, G641 .
¢
' «
{ ouTRIT
i, G
ol GUTOHT(G3:, GG NUML LYY, IBLOCK)
| G .
§ ¢ ZND PF OMS N IMILATTON RN
c .
IF{JINE«CSJ710Mx100) GO TOo 200
YRITECH, 195) Jd ' .
! 195 “IRMAT(2%X, 15)
. G
200 GONTINIR '
) CALL DUTC3,,290, IBLOGK)
: ) URTTRC A, 210) 1BLOCK
210 FORIAT( /2%, THIRLNCK=,19)
sTOP
‘ D
{
¥
:
[
)
t
, A}
| {
; 4 : o 3ot s S R B S e B
MG vt oy o e R e e T SR 2o e s 2 SR :
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3
H
:
c SUBROITINE INPHTS PARA4ETERS FOR SLECHI . Q
c
Do SIIROITINE PARAYSCL{SIPs 1, <o LRINS, £S5 AN, 1)2 AD» BO) -
& . WRLTEC(S, 1) ]
o 1 FORMAT( /2%, 16HHLOCKS (I1S41P) TO JE SKIPPED 0N TAPE/) .
ﬁ REANCS,5) 1SK1P :
A ] FOR4ATCLS) .
2 NRITH(A, 7) [SKIP '
- 7 FORIAT( /2%, SHISKIP=,15) .
e WRITE(S, 10) )
2 1n FORAAT( /2%, 42HNIMBER OF FREQUENCIES (4) AND ELE4ENTS (<£)/)
: , REANCS, 20) M, £
k. 20 FORAAT(212)
4 WRITE(6,30) M, K
4 10 FORMATC/2X, 2HM=, 12, 5X, 2HL=, 12) .
54 URITECH, 40) .
E a0 FORJYAT( /72X, 144NIMBER OF RUNS/) N
E: REANCS, 50) IRINS
E. 50 FORAT(IS)
3 WRAITE(AH, 50) IRINS i
s 60 FORMAT (72X SHRINS =, 1€) . . .
e WRITH(A, 70}
o 7n FORMAT( /2%, 4 1HPOWERS OF SIGVAL (ES) AND WUISE (N AND 0)/)
K REAN(S,30) £S, av, D ) ‘
. 80 FORMAT(37S.2)
z MRITE(4,90) RS, av: D
i 90 FNRGAT /2%, THESS, F5 2, 5% 2HNS, F542, 5%, 2HD=, F5.2)
2 WRITEC(A, 100)
b 100 FOR4AT( /73X, 324INCERTAINTY PARA4ETERS AN AND BO/)
f% REQ(S, 110 an, 90
E: 1" FORGAT(2FS, D) .
2 WAITE(H, 120) A0, 830
b 120 FORMAT( /2%, IHAD=, F5e2, 5%, 3HHOA, F542) B
5 RET!HNY
> END
4
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SHRARNUTINE CHNNSES A RANDOY NOLISE DIRECTION

SHARNNTINE CALLS SHRBROHTINE IN3

A OTF3 3

SHRROUTINE PNSI(NWATN, A0, I XX3)

REAL NWOTH

DIMENSION AC2S),
COMMDN X1(250),X2(35)),X3(250)

AC1)=. 0096
nA(2)=2.0230
A(3)=.048%
A(4) =, NBAB0
A(S)=cN3T7
A(KI=. 1077
ACT7)=,1290
A(%)=2. 1436
A(I)=, 15998
ACIM=a, 1914
ACL1)=,.2136
A(12)=.21A8
AC13)=.25607
ACl4)=,28593
ACES)=.312)
AlLA)Y=,3400
A1 =.3709
Al1B)=,4N27%
AC19)=.4379
A{20)=2.,4775
a(2ir=,5230
A(22)=.5772
A(2%)=.645%
a(24)2.74731
A(25)=.,9317

AC1)=40157
3(2)2,N459
B(3)=.N765
9(4)=2. 1075
9¢5)=. 137
W6z 1703
R{7)3.2025
89¢4)=2,2353
B(Y)=z,2K”5I
qC10r=. 13031
8C11)2.3391
3(12)2,3760
B(iD=.a1a4
$(14)=2,4548
R(15)2.4975
BC16)2,542Y
RC17)2.5914

AN e ‘uqf&ﬁ'?m
g Y ey

g e iviey .
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-
. GE
R{18)=.6450 T3
B(19)=.7038 fi
"C20)=.7704 =
R(21)=2.847%
A(22)=.9411) A
(33 =1,0429 ¢
: A24)=21.2425
(253216350
I Vi
CALL INI(Y, IXXT) g{
JIINT(SN Yy ]
IFCJ.GT.50) .Jas50
IFCANREG. D) NWOTN26, 93318«(?—.5) : : . !
!"(Aﬁ.“‘&).t’)-) G0 TO 10 . i,
1FCGIGGT.25) GO TO S
IFCADLEN. 743 NWOTN=AC) . X
IFCANRA.T.) NWOTN21(.S) . :
GO T 10 J :
s Jaj=25 i
IFCANED.7.) NWOTYz2~ACS)
IFCADEN3.) NWOTY3-3(.1)
1] ETIIN :
)
13
3
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GENERAL INPHIT HANDLER

SET 1XX3=251 T0 INITIALLIZE

coMvoN X1¢(250),X2¢250), X3¢(250)
$A DTF3 3 3 READS FROM DT3

SUBROHUTINE IN3(Y, [XX3)
TGN TTU250), X2¢250), X3¢250
LTUENK MBS 251) 6O TO 10

WEARCS) XTI, Jd=i,250)
XX3= ]

Y=X3¢1I%XX3)
IXX3=[XX3+1}
RETIRN

END
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SURROUTINE GENCIXXX, K, 4.4, WOTN, SATs CN. CH)

gremny

EOMON X1¢250), %X2¢25M), X3€250), ZRC1O), ZIC1OD, INDC100),
ARIDC10, 10), ABIO0C10, 10), ABRIC10, 103, ARIIC10,10), i
GCI0). ABRMOC 1003, ASI40( 100), AYRAIC100), ABIMI( t00? l

D -

GENERATFE FONURIER COXFFIGCIENTS HNDER H{)

QAN

CALL INCYDR, 1XXX) {
CALL INCYDI, 1XXX) - =
DO 100 11,4 .
ARGIFLOAT(1~1) *FLOAT (MM~ 1) xWOTN }
CS=CNS(ARG) . i
SN=SINCARG) )
CALL INCYNR, [XXX)
ZRE1)2CNAYN] + CD®(YDR%CS + YDI#SN) ,
TF(IMeFNe 1) ZR(I>3SATRIRCT) :
CALL INCYNI, IXXX)
ZICI)aCN2YNT + CO*(YDI%CS - YPBR&SN)

100 IF(MMe20.1) 71¢1)=0.
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’ SHAROITINE SHUFLTNI W4, Gl 4, NWUTS, BOR, BOL, €5 G, G2)
c
} REAL NWOTS
i COHION X1€250), X2(250), X3(250), ZRC1D), ZI1C10), INDC1O0),
1 aBRACINL 10), ABLOCIN, 10), AMRICLIO, 10, asg(icin, 10),
2 6CH0), ANRANCIN0), ASTINCINGY, ARI4ICION, a3l41¢100)
i )
1 n SUFFIGIENT STATISTICS {YDEPRNNENT gF ™
) [
G(MM) =20,
i N o110 {=1,4
: 1tn GCAMI=G(MM) + ZR(II«ZRCI) + 2ICII*Z1C1) !
G(MY)3 =1 xGC44)
IF(M4.NE.4) GO TO 130
i IEDN
! NN 120 t=a1,K .
ARGIFLOATC [~ 1) *NWOTS '
120 Gl=2Gl + (ZR(1)«BOR + ZI(1)*301) = COSCARG)
1 * (ZRCI)=BNL - Z21(1)«YN]) = SINCARG)

R122,x0 (%G

G2 -FLOAT(K) «C1&(BOR=ROR + BOI*BOI)
130 CONTINIE
¢

RET1H]N

END
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. SHRROUTINE SUFDTNCK 1, <, s 4o Lo NWOTS, BOR, 301, C2)

REAL NWOTS
COMMON X1(250), %2(250), X3(250), ZRC10), LECI0), I4DC100),

I ABROCLIN, 1005 ATLIOCE0, 1005, ABRICIN, 1Q), ARLICI0, 10),
2 G, ARRINCIN0), ASI4OC100), ABRSIC100), ARIAL1CI00

33D

D

140
G

w3

!
150
H

i
150

¢

c
170

e ot o mt s S et Baveed o o

SUFFICIENT STATISTICY DEPENDENT ON TN
NG 180 L=1,¥X1

CLR=0),

‘CLinn, .

KLa{-t *
nn 140 1=3,4L

IL={+L

CLAsCLR + ZR(1)«/ZR(IL) +
CL1=CLl + ZR(I)=ZICIL) -
BLE=0.

NLi=0,

ELR=(,

ebi=0.

FLE=0,

F‘LX=O- .
IF{M4NE.4) GO TO 170

Z1CI 21 CIL)
ZICI2wZRCIL)

Lijal, -1
nn 150 1=x1,4L
ARG NLAAT (1 +L M) «NUOTS

PLRaNL? + (ZR(C1IBIR + Z1C1)«R0L) « CNSCARG)
+ (LR(1H)=x801 - ZICI)#B0R> « SI¥CARG)

DLI=NLL + (ZR({)>=xBOL1 - ZI1C1)>%30%) = COS(ARG)
s (ZRC(II4YOR ¢ ZiC(1)=xBOL) % SINCARG)

LiPaL+}

NN 160 I=Li2,K

SRC2FLCAT(I-L I P)=WOTS

ELR#ELR + (ZR(1)=xBON + ZIC12«330]1) = COS(ARG)
+ (ARCII«BOL - ZIC{)xBYR) = SINC&AG)

R i=ELL + (7ZR(1)x801 - ZIC1)«ROR) % COSCARG)
-~ CZRCII*AOR » 21(1)%301) & SIN(ARG)

ARG=FLOAT(L) «yUOTS
CCLIFLOAT(KL) «(303%302 + BGIxB3G1)
FLR=2CFL x205¢ ARG)

FLI= =-CFLx*S{NCARG) '

CONTINDE
ARRI(¥ 1, L) 2,402 (OLA=-NLR=-ELR+ FLR)
AL IMM, L) 2 2.4Coa(CLI-DLI+RLI+FLI)
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R R AR N R

DT
AYAN(A, L) = 2.2G2xCLR
BIN(AM,L)=2 2.4C2«(L 1

RETNRN
FAIN
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H c

i

H

H

! 193
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: 134

{ 135

, c
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SHRIANTTINE COMB(GL, G2, 63,66, M,4K1)

v

COMMNN X1(250), X2(250), X3(250), ZR(10), il(lu>; INDCLON),
ARROC 1D, 1)y ABIOCLIN, 1), ARRICIV,1D), ABL1C10,10),
GCI0Y, ARR40CI00), ABI40C100), ABRAICION), ABI41C10Q)

COMBINE SINGLE FRENIFNCY SOLUTIONS

nn 182 1=1,100
ARRM i (l) =0,
ABIMI(I) 200
ARRMOCI) =00
ARIMOCI) =00

53300
no 183 Mq=1,4 )
63263 + G(MY) .

66aGl + (2

N 1835 44=1,"4

nO 184 L=1,K1

INDEX= (f4- 1=l + 1}

AARM L CINDEX) 2 ABRY | CINDEX)

+ A3RICA1L L)
ARSI 4ICINDEX)=ABI41CINDEX) + ABI1(44,L)
ASRMOCINTIEXY2aABREDC(INDEX) + ASRIC41,L)
ARLINCENDEX) =4RTAGCINDEX) + ABINCi1,L)
CONTINIE
RETHIN
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HDOD

190
c

WTRR S

SIBRONUTINE QUTPUT(G3, GG, N, [T, IBLOCK?

COMAON X1(250G), X2(250), X3(250), .7 (1D,

ARROCID, 1)), a810C10, L), ASRICIN, 10, a3l 1CI0, 1),

GC1N), ABRMOCING), ABIMOCI00), A3R4IC100),
OUTPUT

CALL OUT(G3,17YY, 113LOCKL)

CALL OMT(GG,17Y'(, 1 ALOCK)

NN 190 1=21,NiM

J3INDCD)

CALL OHT(ABRAICI, 1YY, IBLOCK .,
CALL OYTCABLI41(¢J), 1YY, IBLOCK)
CALL OUTC(ARRMOCJ)» I7TY, I RLOCK)
CALL OUTCARIMACS) > 1YY, IBLOCK)

RETU]N

: o A S T . co epan v
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ZEC10y, 18aRCIoM,

ABIA41C100)
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¢ SIGNAL XKNOWN EXACTLY? IN NOISE WITH A DIRECTIONAL .
c NOISE COMPONENT OF UNCERTAIN DIRECTION f
c : i
c PART [1 L
o ,
c $A NTF{ 1/DTF2 2 .
c PROGRAM GALLS SURROUTINES: IN,OUT, PARA44, 0RDER, SA1P, BESNLS, .
G GAUSS1, GAIISS2, Gl, G2 ..
[
cc INITIALIZING ' .
c R

DIMENSION FLC(SD), PIC200), AC20,200, XC4), Y(4)

GO4MON X1€250), X2¢250), [NDCI0D), ABRAOCI00), ASI40C100),

1 a3341€¢100>, ABIMICI00, G, Al0AO, CONST, AOCHO0, AOSBO, ™, N4

1XXX225 {

1YvyYal

1RLOCK=0
c )
¢ INPUT PARA4ETERS
G

CALL PATA14(1SKIPa4, K, [HINS, ADs RO)

IFCISKIP. 120) CALL SAI9(2, [S41P)
c
¢ 0RNER MANDLER FOR INPUTTING SUFFICIENT STATISTICS
c )

K1=K-1

CALL DRDERCM, A1, IND, NUM)
c

C=to.

IFCAGLE.Oe) AlDAO3L.
IF(AQLE.2e) 60 TO 20
GCALL BESNISC(AD, 2, FL,PD)
ALNAR=FTI (1)

20 CONSTaFLOAQAT (M= 1)/C¢2.%3. 1415241040
ANCRN2A0=COS(3IN)
ADSAN=ANSINCED)
TROGI=2T. 14199 /FLOATCE~ 1)
XN 41=2-70 41
XC1)aXR041
X(2)=XRI)41/2,

X(I=0.
A{AY=YI0M1/2.
Y(I)aX(2)
T(2)aX(3)
Y(3>)=¥XCAa)
TC(AI3YROM ]

Yy T ’ YWY
e ———— i~ —_; " ——

URITECH, S)
FORAAT (/2X, LAHRIINS CO4PLATED/)
NO 200 J.J=1, IRUNS

[4]
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A e PNET y e L eTILRE AL At & Rt

TR MBS L\ a e DETCNE

IN®UT SUFFICIRNT STATISTICS

GCALL INCG3, I1%¥X)

CALL TN(RG, IXXX)

DO 10 Iay,Nipm

CALL INCARRMICT1), 1XXX)
CALL INCARIMICI), I1XX%)
CALL INCASRMOCI), IXXX)
CALL INCASIMOCI), 1XXX)

CALCULATE L,

ANtPAx ).

ANDENO4= 0,

nd s 1=4,4

CAaLL GAIISS1CXCI),Y(1), 5. AREA)
ANII4z ANIIM+ AREA

DG 17 I=21,4

CALL BANSS2(X(I),Y(1),6,AREA)
ADENO$1=ADENQM+AREA

AL= EXP(GG) = ANYA4/ADENOM
ouTPHT L
CALL OHTCAL, IYYY, IBLOCA)

END OF ONE SIMULATION RUN

IFCJJ+NE. (JJ/S0)%S50) GO TO 200
WRITE(H, 195) JJ
FOR4AT(2X,15)

CONTINUE

CALL 0UT(0., 250, IRLOCK)
WRITE(A,210) [RLOCK
FORMAT( /2%, THIRLOGK=, 13)
sTop

END

St et e VAT T 3 i, T bt
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{
SHRROHTINE GAIISS1(X,Y, 4, AREA) 1}

SUBROYUTINE GA!HSS SES THE M~-POINT GAUSS-LEGENDIE QIADRATURE

FORIIILA TO COMPHTE THE INTEGRAL OF Gl1(X)«NDX BETWEEN T

INTEGRATION LIMITS X AND Y+ THE ROOTS Of SEVEN LEGEND ;
R

POLYNNMIALS AND THE WEIGHT FACTORS FOR THE CORRESPOWDING

GHADRATIINES ARE STORED (M THE £ AND WELIGHT ARRAYS

RESPECTIVELY. M 4AY ASSHUAE VALUES 2,3,2,5,5, 19, AND 15 '

ONLY. THE APPROPRIATE YALIJES FOR THE of~POINT FORMIJLA ARE i

LOCATED IN ELEMENTS 2(KZY(1)s .o » Z(LEV(I+1)-1) AND

WEIGHT(LEC{i))s» osee » WEIGHT(KEY(I+1)=-1) WHERE THE PROPER

YALUE OF 1 IS DETER4INED BY FINDING THE SUSBSCRIPT OF THE

ELEMENT OF THF. ARRAY NPOINT WHICH HAS THE VALUE ¢« [F AN

INVALID YALUE OF 4 IS UUSED, A TRUE ZERO 1S RETHRNED AS THE

VALIIE OF GAlJSS.

"~
[

DIMENSION NPOINT(7), KEY(8), 7(24), WEIGHT(24)
PRESET NPOINT, KEY, Z, AND.WEIGHT ARRAYS

DATA KEYC13SKEY(2) 4 KEY(IILKECL(A)I>KEY(S) s KEY(H)»KEY(T)>L"Y(Y)
7 Yo 2, 4, 6, 9, 12, 17, 25 7/

NDATA NPOINTC1)LNPOINT(2),NPOINTC )L NPOLNT(4), NPRINTIS)
»
NOOINT(A),NEOINTLT)
/7 2, 35 4, S, 6, 10, 1S5 /

DATA Z( 1), 7Z€2), 243)s ZCad, 7%CS)s ZC6)» ZCTI» ZCE), 7Z.(5)57%C10),
ZCH1)ZC12),ZC13),2€1aA)572C1S),2¢16),2C1T),2C18),2%¢19),2(20),
2€213,2(22),72(23>,7(24)

/ 0.577150, 0.0 s 0774597,
0.339931, 0.3K611346, O.v » 0.533469,

0.9051%0,
N. 148874,
N.973907,
N.S7TM 72,

Ne238619,
0.433395,
!)-0 ’
0.7248419%,

0.661209,
0.6794£10,
0:201194,
N+383207,

0932470
0.865063,
0.394151,
0.937273,

0987993 /
NDATA WEIGHT(}), WEIGHT(2), WEIGHT(3), WEIGHT(A&), WSIGH
T

WEIGHT(4), WEIGHT(7), WEIGHT(8), WEIGHT(9),WEIGHT ~
¢
WEIGHTC 1), WELGHT(12), WEIGHT (13), WEL GHT ( 14), WEIGH
T

WEIGHT(16) , WEIGHT(17),YEIGYT(18), WEIGHT( 19), WEIGH
T .
WEIGHT(21), VEIGHT(223, VEIGHT(23), USI GHT(23)
/7 1.0 s 0.%433389, 0.555556,
0.56521145, 0.347355, 0.568389, 0.473629,
0236927, 0.467914, 0.360762, 0.171324,

sy A s a SN e o K B2




AR A Samanein

VMIIOD QO Q- aQaaa

D

aQ

I > O X

N.295524, 0.249267, 0.219086, 0.149451, -

De0666T1, 0.202573, 0.198431, 0186161,
04166269, 0.139571, 0.107159, 0.070366,

0.030753 7/ ' :

FIND SHBSCRIPT ¢ FIRST Z AND WEIGHT VALUE

Dy oy I=1,7
IF(M.EQ.NPOINT(I)) GO TO 2
CONTINUE

INVALID 4 (JSED

AREA=0,
RETHRN

SET 1JP INITIAL PARAMETERS

JFIRST=XEY(1?
JLAST2KEY I+ 1) -~ |
C=(Y-X)/2.

D=CY+X> /2.

AGCUMULATE THE SUM 14 THE M-POINT FOMULA

Sif4=20.

Do S J=JFIRST,JLAST

IFCLCJ) «ENeDe) SIM=SH* + WEIGHT(JI*GI(D)
LF(Z2CI) e NEo0o) SHM=SU4 + WEIGHT(JI*(GI(7Z(J)%®C + D
+ GlI(=7¢J)%C + D)) !

“AKE INTERVAL CORREGCT!IN AND RETURN
AREA=CxSIM

RETUIN
END

ok nn evieed s e et B L : Za
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wd 3

73

N

. ‘i

o FIUNCTION CALLED 87  GAISSYT  (NUMERATOR) :

C 4“4
FUNCTION GI(WOTS) §
COMAON X1¢250), X2(250), LINC100), ABRMOC100), AHIANCI00), .
1 AR ICI00), ASLAL1C100Y, Cs» ALVAD, CONST, AOCBI, ANSH0, A, w4 i

c

SS=f).
N0 10 I=i,NiM
ARG= FLOATCINDC(I)=~1) * WOVS
10 SS= SS + ABRMI(IYXCOSCARG) - ABL41CI)Y«SIN{ARG)
5S=C*xSS + AOCHOKCOS(FLOAT( =-1)=WQTS) - AUSBOxSIN(FLOAT(M~1)*WOTS)

G1=CONST®EXR(SS)
RETHURYN
END

i
;
!
I}
§
i
¢
i
!
¢
|
!
H
H
i
f
!
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SURBROUTINE GAIISS2(X, Y, Y, AREA)

SHRRQOUT (WL, GAlISS 1ISES TiHFE M-POINT GAUSS-LEGENDRE QUABRATURE
_ FoR4iLA TO CO4PHTE THE INTEGRAL OF G2(X)*xDX BETWEEN
INTEGRATION LIMITS X AND Y. THE RUOTS OF SEVEN LEUEND
n "
POLYNOM1 ALS AND THE WEIGHT FACTORS FOR THE CORRESPONDING
AJADRATIRES ARE STOREu IN THE 4 AND WEIGHT ARRATS
RESPECTIVELY. M MAT ASSIME YALIJES 2,3,4,5,6,10, AND 15
ONLY. THE APPROPRIATE VALUES FOR THE v-POINT FOR4ULA ARE
LOC\TED I[N ELEMENTS Z(KEY(1)s +e¢s » ZIKEYC(I+1)~1) ANO
WEIGHT(KEYCI))» eov 5 WEIGHT(KEY(I+!)~1) WHERE THE PRCQPER
VaLUE OF I 1S DETERMINED BY FIWNDING THE SUBSCRIPT QOF THE
ELEMENT OF THE ARRAY NPOINT WAICH HAS THE VALUE de. IF AN
INVALID YALUE Or M IS USED, A TRUE ZERG IS RETURNED AS THE
VALIE OF GAUSS5.

PR

DIMENSION NPOINT(7>, KEY(8), Z(24), WEIGHT(Z4)

PRESET WPOINT, KEY, Z, AND WEIGHT ARRAYS

Qo a agaaaoaaaaAamaG NG

‘

DATA KEYC1),KEYC(2 {EY(3) s KEY(A)»AET(S)KEY(6) sKEY (T, LEY (D)
§ /1 % 4» 6, %, 12, 175 25 /

- DATA NPOINTC( ), NPOINTC(2Y,NPOINT(3),NPOINT(4), NPOINT(S),
1 NPOINTC(HY>NPOINTC(T)
‘ /7 2, 3, 4, 5, 65 10, 15 7/

DATA Z{1)s Z(2), Z2(3), ZCAY, 709, %6)s LCTI, 2(8), 2(9),ZC10),

-

ZOUDLZU iDL 201 A4 201527 C 1R L ZC1TILLCIBI,ZC 192, 2C20),

2(21),7¢22),2(23),7%(24)

/7 0+577350, 0.0 s 04774597,
0.339981, 0.361135, 0.Q s 94538469,
0.9061897, 0.238619, 0.661209; 0.932470,
0. 148894, 6.433395, 0.579410, 0.86%063:
0.973907, N.0 s 0201194, 0.3%4151,
N.STN972, C.724418, 0.34°3207, G+937273,
0.987993 / '

ARVNOU B WD

NDATA WEIGHT( 1), WEIGHT(2), WEIGHT(3), WEIGHT(4)>, WEIGH

(S, T

{ WELGHT(SY, WERIGHT( ) WEIGHT(B), WEIGHT(Y),WELGHT
16), ¢

2 UELGHT (1 1)L WEIGHTC I2) L WELGHT (1 3) > WEIGHT(14) s WEIGH
(is), T

3- WELIGHT(16)» WEIGHTC 1 TILUELGHT(18)Y s WEIGHT( 19),WEIGH
(203, T

s YEIGHT(21) o WEIGHT(22), WEIGHT (233, WEIGHT(24)

5 / 1.0 s D.838389, 0.555556,

6 0.652145;: 0347853, 0.568499, 0.473629,

7 0'23§927t Qe 86T214, 0N,360762, C. 171324,

L e -y - . I U T AR S o 4oey
e b e e ey o iy ARSI 5 TN AR A k8 s EREBEIVHAE0  AH HAAEED SN et AT AN PRI,



TATE? ¥ 4F 5 s TR IR g2
TR TR T TR A SIS T, 42 TSR TR ST

202

-1

] ’ [ 29
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0.295524, 0.269257, 0.219086, 0.149451,
CeD66671, 04202573, 06138431, 0.186i61,
De 166269, 0139571, 0.107159, 0.070366,
0.030753 /

T>ON

N

FIND SHBSCRIPYT OF FIRST Z AND WEIGAT VALUE

DO | I=1,7

[FC(HERNPGINT(I})> GO TO 2
CONTINIE

INVALT.) M USED

AREA=20.
RET{IIN

SET UP INITIAL PARAYETERS

JFIRST=KEY(I)
JLAST3YEY(I+1) - )
C=(Y=-X)/2.

Da3(Y+X> /2.

ACCITULATE THRE SUM IN THE M-FOINT FORMULA

S1=0.

N0 S J=2JFIRST,JLAST

IFCZCI) «ENe Qs) SUMaSH + WEIGKHT () ¥G2(D) _

IFCZCJ) oNK Q) SUM=SIM + WEIGHT(J)Xx(G2CL(J)«C + D)
1 + G2(=72¢)«C + D))

MALFE INTERVAL CORKECTION AND RETURMN
AREA=Ck SIpg

RETIRN
N9
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FIINCTI0M CALLED BY GAUSS?2 (DENU4INATOR)

TUNCTION G2(WOTS)

COMMON X1(250), X2(250), IADCIO0), ABRADCIND), ABL40C100),
ABRM I (10D, ABI41C100), C,» AIDAD, CONST, AOCBO, AUSHO, 4, N4

SS=0.
DO 10 I=1,NU4
ARGz FLOATCINDC(I)~-1) % WOTS

SS= SS + ASRMN(I) *COSCARG) -~ ABIA0CI)I=xSIN{ARG)

S$2CxSS + AONCRBOGRCOSCFLOAT (M- 1) xWOTS)

G2=CONST=EXP(SS)
RET!IRN
END

- ADSBO«SINC(FLOAT (- 1) xWOTS)
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§, c GENERAL [NPUT HAMDLER

c

. c SET IXXX=25! TO INITIALIZE

: I GCOMMON X(250)

i c $A DTF2 2 3 READS FRO4 DT2 .

c
; SHRROUTINE IN(Ys IXXX)
{. COMMON X(250)
IFCIXXX.NBe251) GO TO 10
READ(2) (X(J)» J=1,250)
! 1i%X=t
: 10 YaX(IXXX)
- IXXX=21 XXX+ 1
) RETHRN
. END
A
e e o B A A AL o T T T Tt e £ Lo o g s A4
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GENERAL OUTPUT HANDLER

SET IYYY=1, IBLOCK=0 TO INITIALIZE
COMMON Xi(250), X(250) R
$A DTFi 1| 3 WRITES ON DTI

aQaaaan

SUBRQUTINE OUT(Y,1YYY,1BLOCK)
COMMON X1(¢(250), X(25D)
XYYy ayY
IYYY=1YYY+ !
IFC(IYYY.NE.51) GO TO 10
WRITECL) (XCJS), J=1,250)
1YYyY=| .
I BLOCK=IBLOCK+1}

10 RETURN
END

[ B St Y et

LS

NN Sy
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10

20
30

40
50

69

ORDER HANOLER

WRITES IN INCREASING ORDER THE L¥N+1 PRODUCT VALUES

SIBROIITINE ORNDER(M,K 1, IN, NUM)
NDIMENSION INCIOO)

NiM=0

DO 10 I=1,100

INCI)=0

DO 30 Hl=1,M

N0 20 L=1,K1

IND= (41-1)xL+!1

INCIND)=

CONTINUE

DO 40 [=1,100

IFC(INCI)NEs 1) GO TO 40
NIM=NIM+ )

INCHIM) =1

CONTINUE

WRITE(5S,50)

FORMAT(//72%, 2NHLxN+ 1 PRODUCT VALUES/)
WRITE(A,H60) (INCJ), J=1.NUM)
FOR¥AT(2%, 5(13,5X))

RETHRN

END

n o r et
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c SUBROUTINE TO SKI® [S<i)F BLOCKS OF : !
c 250 NIMBERS/BLOCK STORLD ON DTS . 5_
c
c $A DTFI I -
SUBROUTINE SKUIP(I,ISKIP) ) g ’
DIMENSION X(250) ?
N0 10 K=1,1SKIP ]
10 READC1IY (¥(.J)» J=1,250) .
RETHRN
END 1

N BT T WG L b g DA P et x e
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SUBRNUTINE BRESNIS(X, 1AX, F1, PL)

THIS SIBROUTINE CALCHLATES THE MODIFIEN RBESSEL FUNGTION
FICD2INX), FUC2)=11(X)s ooes FI(NMAX) =1 (NMAX-1)(X)
NIYINE BY 0 SRVROR (F X=0.

NOES NOT CHRECK FOR X LESS THAN 0.

DIMENSION FICSO), PL(200)
Sig=9,

I=x

JMaX=1+21

TZ:?./*

PL¢.14AaX+2)a(Q,

PI(JYAX+1)=21.E-20

DO 1 .J=1,J4aX

K=.MAX+2-]

DK== ’
PICK= 1) =04 TZePI(K)+PIC+ 1) '

SIM=Sr1 9+ PI (L)

SUM=SU4+ SUM

AZEXD(K) /¢RI (1) +SiMd)

No 2 N=i,NvAX

FI(N)za&PI(N)

RETIUSN

END

v v
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PROGRAM CALCULATES PD AND PF

27

$4 NDTF2 2
PROGRAYL CALLS SUBIOHTINES POPFM, IN, AND SKIP

aqaaaan

| anaamt ]
ey

NNII3LE PRECISION PD, PF
READCS,S) [SKIP
5 FO34AT(ID)
REANCS, 10) N
10 FO44T(15)
READ(S, 15) PDO
1S FORMAT(FT.6) :
1 READ(S,20) THRESH _ _ 1‘
' IFCISXIP.NE.0O) CALL SKIP(2,ISX1P)
20 FORMAT(F5,2)
CALL PROFY(THRESH,N, PDO, PN, PF) .
WRITE(6,30) PF,PD : A !ii
30 FORMAT(2X, 3HPF=, D13+ 655X 34PD7, D13.6) {
REWIND 2
GO TO 1
STOP N
END .

e~
bonmrrn o8
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SHBROUTINE CALCHLATES PF AND PD
FRCH4 N VALUES OF L UNDEZR HO)

$SA DTF2 2
CALLS SIH3I0UTINE IN

SHRROUTINE PDPST4CTHRESH, Ns PDO, PD, PF)
NDOMBLE PRECISION PP, PF, PRNA
PF=0,

o= PO

[XXX=25]1

PROAat o /FLOAT ()

D) 10 I=],N

caLl INCY,IXXX)
IF(Y.LT«THRESH) GO TG 10
PF= PF + PROB

£Dz PD + Y¥PRCH

CONTINUE

RETURN

END

R e
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